中图分类号:
U416.217
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 崔洪,杨建丽,刘振宇.煤液化残焦基本性质及气化活性的考察研究[J].燃料化学学报,1999,27(增1):16-20. CUI Hong, YANG Jian-li, LIU Zhen-yu. Study on Basic Properties and Gasification Activity of Coal Liquefaction Residue[J]. Journal of Fuel Chemistry and Technology, 1999, 27(S1):16-20.
[2] 赵鹏,孙淑君,卢正元,等.煤直接液化残渣性质及高附加值应用研究进展[J].洁净煤技术,2009,15(6):33-35. ZHAO Peng, SUN Shu-jun, LU Zheng-yuan, et al. Research Progress on the Properties and High Added Value of Direct Coal Liquefaction Residue[J]. Clean Coal Technology, 2009, 15(6):33-35.
[3] 何亮.煤液化残渣复合改性沥青制备及其性能研究[D].西安:长安大学,2013. HE Liang. Study on the Preparation and Performance of Asphalt Modified by Coal Liquefaction Residue[D]. Xi'an:Chang'an University, 2013.
[4] 朱伟平.煤直接液化残渣改性沥青的研究[J].神华科技,2009,7(6):68-71. ZHU Wei-ping. Study on Direct Coal Liquefaction Residue Modified Asphalt[J]. Shenhua Science and Technology, 2009, 7(6):68-71.
[5] 季节,索智,石越峰,等.煤直接液化残渣与沥青共混后的性能试验研究[J].公路交通科技,2016,33(5):33-38. JI Jie, SUO Zhi, SHI Yue-feng, et al. Experimental Study on Properties of Asphalt Blended with Coal Liquefaction Residue[J]. Journal of Highway and Transportation Research and Development, 2016, 33(5):33-38.
[6] 张德润,罗蓉,陈彧,等.基于表面自由能的煤直接液化残渣改性沥青性能分析[J].中国公路学报,2016,29(1):22-28. ZHANG De-run, LUO Rong, CHEN Yu, et al. Performance Analysis of DCLR-modified Asphalt Based on Surface Free Energy[J]. China Journal of Highway and Transport, 2016, 29(1):22-28.
[7] TERREL R L, AL-SWAILMI S. Water Sensitivity of Asphalt-aggregate Mixes:Test Selection[R]. Washington DC:National Research Council, 1994.
[8] 魏建明.沥青、集料的表面自由能及水分在沥青中的扩散研究[D].青岛:中国石油大学(华东),2008. WEI Jian-ming. Study on Surface Free Energy of Asphalt, Aggregate and Moisture Diffusion in Asphalt[D]. Qingdao:China University of Petroleum, 2008.
[9] ELPHINGSTONE G M J. Adhesion and Cohesion in Asphalt-aggregate Systems[D]. College Station:Texas A & M University, 1997.
[10] BHASIN A. Development of Methods to Quantify Bitumen-aggregate Adhesion and Loss of Adhesion Due to Water[D]. College Station:Texas A & M University, 2006.
[11] BHASIN A, MASAD E, LITTLE D, et al. Limits on Adhesive Bond Energy for Improved Resistance of Hot-mix Asphalt to Moisture Damage[J]. Transportation Research Record, 2006(1970):3-13.
[12] 韩森,刘亚敏,徐鸥明,等.材料特性对沥青-集料界面粘附性的影响[J].长安大学学报:自然科学版,2010,30(3):6-9. HAN Sen, LIU Ya-min, XU Ou-ming, et al. Influence of Material Characteristics on Adhesion at Interface Between Asphalt and Aggregate[J]. Journal of Chang'an University:Natural Science Edition, 2010, 30(3):6-9.
[13] 窦晖.基于表面能理论的温拌沥青混合料水稳定性研究[D].兰州:兰州交通大学,2012. DOU Hui. Research on Water Stability of Warm Mix Asphalt Based on the Theory of Surface Energy[D]. Lanzhou:Lanzhou Jiaotong University, 2012.
[14] 孙瑜,李立寒.基于表面能理论的沥青混合料抗剥落性能研究[J].建筑材料学报,2016,19(2):285-291. SUN Yu, LI Li-han. Research on Anti-stripping of Asphalt Mixture Based on Surface Energy Theory[J]. Journal of Building Materials, 2016, 19(2):285-291.
[15] 徐静,洪锦祥,刘加平.沥青老化机理综述[J].石油沥青,2011,25(4):1-7. XU Jing, HONG Jin-xiang, LIU Jia-ping. Summarize of Asphalt Aging Mechanism[J]. Petroleum Asphalt, 2011, 25(4):1-7.
[16] CHENG D, LITTLE D N, LYTTON R L, et al. Use of Surface Free Energy Properties of the Asphalt-aggregate System to Predict Moisture Damage Potential[J]. Journal of the Association of Asphalt Paving Technologists, 2002, 71:59-88.
[17] WASIUDDING N M, FOGLE C M, ZAMMAN M M, et al. Characterization of Thermal Degradation of Liquid Amine Anti-strip Additives in Asphalt Binders Due to RTFOT and PAV-aging[J]. Journal of Testing and Evaluation, 2007, 35(4):387-394.
[18] AGUIAR-MOYA J P, SALAZAR-DELGADO J, BALDI-SEVILLA A, et al. Effect of Aging on Adhesion Properties of Asphalt Mixtures with the Use of Bitumen Bond Strength and Surface Energy Measurement Tests[J]. Transportation Research Record, 2015(2505):57-65.
[19] 杨进宇,李波,李晓辉,等.短期老化对温拌沥青结合料表面能的影响[J].兰州交通大学学报,2016,35(6):19-23. YANG Jin-yu, LI Bo, LI Xiao-hui, et al. Effect of Short-term Aging on Surface Energy of Warm Mix Asphalt Binder[J]. Journal of Lanzhou Jiaotong University, 2016, 35(6):19-23.
[20] ABUAWAD I M. Mechanical and Surface Free Energy Characterization of Asphalt Concrete for Moisture Damage Detection[D]. Champaign:University of Illinois at Urbana-Champaign, 2016.
[21] 赵永尚.煤直接液化残渣改性沥青及其胶浆的性能研究[D].北京:北京建筑大学, 2015. ZHAO Yong-shang. Study on Performances of DCLR Modified Asphalt and Asphalt Mortar[D]. Beijing:Beijing University of Civil Engineering and Architecture, 2015.
[22] GOOD R J. Contact Angle, Wetting, and Adhesion:A Critical Review[J]. Journal of Adhesion Science Technology, 1992, 6(12):1269-1302.
[23] FOWKES F W. Dispersion Force Contributions to Surface and Interfacial Tensions, Contact Angles and Heat of Immersion[J]. Advances in Chemistry Series, 1964, 43(1):99-111.
[24] 陈燕娟,高建明,陈华鑫.基于表面能理论的沥青-集料体系的粘附特性研究[D].东南大学学报:自然科学版,2014,44(1):183-187. CHEN Yan-juan, GAO Jian-ming, CHEN Hua-xin. Research on Adhesion in Asphalt-aggregate Systems Based on Surface Energy Theory[J]. Journal of Southeast University:Natural Science Edition, 2014, 44(1):183-187.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目(51478028,51778038)
{{custom_fund}}
{{custom_fund}}