在分析随机型用户均衡模型及其优化条件的基础上, 充分运用目标函数的一阶、二阶微分信息, 从非线性规划理论出发推导出随机型用户均衡模型的敏感度方程。具体推导了均衡状态下路段时间、流量对交通需求、自由旅行时间和路段容量3个输入变量的敏感度方程, 并用交通网络要素的选择概率来描述;最后在小型交通网络上, 进行了敏感度分析的数值试验。结果表明:敏感度计算可以植入交通网络模型的求解过程, 无需增加额外计算工作量, 计算方法容易被交通工程师所接受, 为研究交通网络的鲁棒性、确定网络的关键要素等提供了有效的解析方法。
Abstract
On the basis of analyzing stochastic user equilibrium model and its optimal conditions, applying the first order and the second order informations, sensitivity equation of stochastic user equilibrium model was deduced by nonlinear planning theory. Sensitivity equations about relation between link time, link flow and traffic demand, free travel time and link capacity under equilibrium state were deduced. Selectivity probability of traffic network was used to describe the sensitivity equation. The numerical example was executed on a small traffic network.Results show that sensitivity can be implemented in the procedure of solving the traffic network model, the sensitivity analysis does not require any additional calculation and provides a useful tool for analyzing the robustness or determining the critical element of the traffic network.
关键词
交通工程 /
交通网络 /
敏感度分析 /
选择概率
{{custom_keyword}} /
Key words
traffic engineering /
traffic network /
sensitivity analysis /
selectivity probability
{{custom_keyword}} /
中图分类号:
U491.13
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TOBIN R L, FRIESZ T L.Sensitivity Analysis for Equilibrium Network Flow[J].Transportation Science, 1988, 22(4):242-249.
[2]程 琳, 王 炜, 王京元, 等.用户均衡网络中的敏感度分析方法[J].系统工程理论与实践, 2004, 24(11):116-121.
CHENG Lin, WANG Wei, WANG Jing-yuan, et al.Solutions to Sensitivity Analysis for the Equilibrium Network Flow[J].Systems Engineering-Theory and Practice, 2004, 24(11):116-121.
[3]YING J Q, MIYAGI T.Sensitivity Analysis for Stochastic User Equilibrium Network Flows:a Dual Approach[J].Transportation Science, 2001, 35(4):124-133.
[4]CLARK S D, WATLING D P.Sensitivity Analysis of the Probit-based Stochastic User Equilibrium Assignment Model[J].Transportation Research Part B, 2002, 36(7):617-635.
[5]徐丽群.交通拥挤控制的实时决策支持模型[J].控制与决策, 2005, 20(11):1 221-1 224.
XU Li-qun.Real-time Decision Support Model for Traffic Congestion Control[J].Journal of Control and Decision, 2005, 20(11):1 221-1 224.
[6]程 琳, 王 炜.Dial交通量分配模型和选择概率问题的研究[J].交通运输工程与信息, 2002, 2(3):29-32.
CHENG Lin, WANG Wei.On Dial Assignment and Choice Probabilities[J].Transportation Systems Engineering and Information Technology, 2002, 2(3):29-32.
[7]王丰元, 潘福全, 张丽霞, 等.基于交通限制的路网最优路径算法[J].交通运输工程学报, 2005, 5(1):92-95.
WANG Feng-yuan, PAN Fu-quan, ZHANG Li-xia, et al.Optimal Path Algorithm of Road Network with Traffic Restriction[J].Journal of Traffic and Transportation Engineering, 2005, 5(1):92-95.
[8]胡大伟, 宣登殿.公路快速客运网络系统规划方法[J].长安大学学报:自然科学版, 2004, 24(2):83-86.
HU Da-wei, XUAN Deng-dian.Planning Method of Highway Express Traveler Network System[J].Journal of Changan University:Natural Science Edition, 2004, 24(2):83-86.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点基础研究发展计划(“九七三”计划)项目(2006CB705500);国家自然科学基金项目(50578037);
国家高技术研究发展计划(“八六三”计划)项目(2007AA11Z205)
{{custom_fund}}
{{custom_fund}}