机器视觉法桥梁表观病害识别与检测方法专栏
冯东明, 余星宇, 黎剑安, 吴刚
为了实现悬索桥主缆的自动化、智能化检查,开展了基于无人机的主缆巡检路径规划和小样本数据下的主缆病害识别研究。首先,利用无人机倾斜摄影测量技术快速建立悬索桥的三维模型,提出主缆无人机自动巡检路径的规划方法;然后,采用Faster RCNN网络模型识别主缆图像中的表观病害;最后,采用基于图像融合的数据增强方法,提高小样本数据集下目标检测的准确率。在Faster RCNN网络模型训练过程中,随着训练轮次的增加,测试集中裂纹、锈蚀和划痕3类病害的平均精确率得到提升,并在第15个训练轮次后逐渐稳定,在经过100个训练轮次后,测试集中所有类别的平均精确率为0.723。以小龙湾桥为研究对象,进行了主缆的现场检查试验。研究结果表明:基于悬索桥三维模型进行主缆无人机自动巡检路径规划具有实际可行性;基于Faster RCNN网络模型能较准确地识别主缆的裂纹、锈蚀和划痕病害;利用图像融合方法生成病害数据能有效克服数据样本少的问题,并提高识别的准确性。