为了探讨钢管与混凝土之间的粘结-滑移相互作用关系,在已有推出试验研究的基础上,提出了钢管与混凝土粘结-滑移本构关系的简化模型;根据简化模型,采用有限元分析软件ANSYS中非线性弹簧单元Combination39对钢管与混凝土粘结-滑移相互作用进行了数值模拟,并对钢管混凝土梁跨中、柱中截面受拉侧、受压侧钢管与混凝土应力随加载的变化过程,以及加载结束时钢管与混凝土相对滑移沿试件长度的分布规律进行了探讨。结果表明:由简化模型计算的粘结-滑移曲线与试验曲线吻合较好,数值计算得出的钢管混凝土结构受压弯作用时的M-d、P-u曲线与试验结果基本吻合,对钢管与混凝土界面受力性能及相互滑移分布规律的探讨将有助于更好地了解钢管与混凝土之间的粘结-滑移相互作用特点。
Abstract
In order to discuss the bond-slip behavior between steel tube and concrete, a simplified model for the bond-slip constitutive relationship was proposed based on the test results. Nonlinear spring element named Combination39 in the ANSYS program was adopted to simulate the bond-slip behavior between steel tube and concrete. Variation process of stress of steel tube and concrete at the mid-span of beams and the mid-section of columns vs loading and the distribution rules of relative slip between steel tube and concrete along specimen length were discussed. Results show that the bond-slip curves agree well with test curves by using the simplified model. The numerical simulation results of M-d curve and P-u curve for the concrete-filled steel tubes are in good agreement with experimental results when the tubes are in a state of compression bending. The primary discussion on mechanical behavior of interface and slip distribution rule will be helpful for understanding the characteristics of the bond-slip behavior between steel tube and concrete.
关键词
桥梁工程 /
钢管混凝土 /
数值模拟 /
粘结-滑移 /
简化模型
{{custom_keyword}} /
Key words
bridge engineering /
concrete-filled steel tube /
numerical simulation /
bond-slip /
simplified model
{{custom_keyword}} /
中图分类号:
U445.57
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] TOMII M,SAKINO K.Elasto-plastic Behavior of Concrete Filled Square Steel Tubular Beam-columns[J].Transactions of A I J,1979(280):111-120.
[2]SCHNEIDER S P.Axially Loaded Concrete-filled Steel Tubes[J].Journal of Structural Engineering,1998,124(10):1125-1138.
[3]SHAKIR-KHALIL H.Pushout Strength of Concrete-filled Steel Hollow Sections[J].The Structural Engineer,1993,71(13):230-233.
[4]SHAKIR-KHALIL H.Resistance of Concrete-filled Steel Tubes to Pushout Forces[J].The Structural Engineer,1993,71(13):234-243.
[5]AVAL S B B,SAADEGHVAZIRI M A,GOLAFSHANI A A.Comprehensive Composite Inelastic Fiber Element for Cyclic Analysis of Concrete-filled Steel Tube Columns[J].Journal of Engineering Mechanics,2002,128(4):428-437.
[6]薛立红,蔡绍怀.荷载偏心率对钢管混凝土柱组合界面粘结强度的影响[J].建筑科学,1997(2):22-25.
XUE Li-hong,CAI Shao-huai.The Influence of Load Eccentricity on Bond Strength at the Interface of Concrete-filled Steel Tube Columns[J].Building Science,1997(2):22-25.
[7]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度
(上)[J].建筑科学,1996(3):22-28.
XUE Li-hong,CAI Shao-huai.Bond Strength at the Interface of Concrete-filled Steel Tube Columns: Part Ⅰ[J].Building Science,1996(3):22-28.
[8]ROEDER C W,CAMERON B,BROWN C B.Composite Action in Concrete Filled Tubes[J].Journal of Structural Engineering,1999,125(5):477-484.
[9]刘永健,池建军.钢管混凝土界面抗剪粘结强度的推出试验[J].工业建筑,2006,36(4):78-80.
LIU Yong-jian,CHI Jian-jun.Push-out Test on Shear Bond Strength of CFST[J].Industrial Construction,2006,36(4):78-80.
[10]HAN L H,LU H,YAO G H,et al.Further Study on the Flexural Behavior of Concrete-filled Steel Tubes[J].Journal of Constructional Steel Research,2006,62(6):554-565.
[11]SAKINO K,NAKAHARA H,MORINO S,et al.Behavior of Centrally Loaded Concrete-filled Steel-tube Short Columns[J].Journal of Structural Engineering,2004,130(2):180-188.
[12]YANG Y F,HAN L H.Experimental Behavior of Recycled Aggregate Concrete Filled Steel Tubular Columns[J].Journal of Constructional Steel Research,2006,62(12):1310-1324.
[13]SAKINO K,SUN Y.Stress-strain Curve of Concrete Confined by Rectilinear Hoop[J].Journal of Structural Construction Engineering,1994,461:95-104.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
土木工程防灾减灾安徽省工程技术研究中心项目(2007368)
{{custom_fund}}
{{custom_fund}}