针对目前预测沥青混凝土弹性模量的主要方法(基于宏观层面的试验法和经验法)均未能反映其细观结构的问题,基于复合材料细观力学方法建立了沥青混凝土多相的2层嵌入式细观力学模型,求解得到单夹杂复合材料的2个弹性常数(弹性模量和剪切模量);结合多步骤方法,即将各档粒径集料与空隙逐一投入,然后进行均匀化,得到多夹杂复合材料弹性模量,并与试验值进行对比。结果表明:预测结果与试验结果基本相同;该方法能够反映各组成材料在沥青混凝土中所起的力学作用;沥青混凝土的空隙率、沥青胶浆的弹性模量对沥青混凝土的弹性模量有重要影响。
Abstract
Aimed at the problem that the main methods of predicting elastic modulus at present are experiment method and empirical method based on macro level and can not reflect the microstructure of asphalt concrete, based on composite material micromechanics method, a two-layer built-in micromechanics model was employed to obtain two elastic constants (elastic modulus and shearing modulus) of composite material with a single inclusion. Then, using the stepping method, namely every kind of inclusion was treated individually and the effective elastic modulus was calculated in each step. The elastic modulus of composite material with multi-inclusion was derived. It was compared with test value. Results show that predicted result agrees well with test result. This model can reflect the roles of constituent materials in composite material. Air void and elastic modulus of asphalt mixture have great influence on elastic modulus of asphalt concrete.
关键词
道路工程 /
沥青混凝土 /
细观力学模型 /
复合材料 /
有效性能 /
多夹杂
{{custom_keyword}} /
Key words
road engineering /
asphalt concrete /
micromechanics model /
composite material /
effective property /
multi-inclusion
{{custom_keyword}} /
中图分类号:
U414.1
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] Shell International Petroleum Company Limited.Shell Pavement Design Manual-Asphalt Pavements and Overlays for Road Traffic[R].London:Shell Inter-national Petroleum Company Limited,1978.
[2]ASTM D4123-82,Standard Test Method for Indirect Tension Test for Resilient Modulus of Bituminous Mixtures[S].
[3]LYTTON R.Materials Property Relationship for Modeling the Behavior of Asphalt-aggregate Mixtures in Pavements[M].Washington DC:Transportation Institute,1990.
[4]LI Y Q,METCALF J B.Two-step Approach to Prediction of Asphalt Concrete Modulus from Two-phase Micromechanical Models[J].J Mater Civil Eng,2005,17(4):407-415.
[5]LI G Q,LI Y Q,METCALF J B,et al.Elastic Modulus Prediction of Asphalt Concrete[J].J Mater Civil Eng,1999,11(3):236-241.
[6]CHRISTENSEN R M,LO K H.Solutions for Effective Shear Properties in Three Phase Sphere and Cylinder Models[J].J Mech Phys Solids,1979,27(4):315-330.
[7]TIMOSHENKO S P,GOODIER J N.Theory of Elasticity[M].3rd ed.New York:McGraw-Hill,1970.
[8]杨庆生,陶 绪.多夹杂问题的分步格式[J].复合材料学报,2007,24(6):128-134.
YANG Qing-sheng,TAO Xu.Stepping Scheme for Multi-inclusion Problem[J].Acta Materiae Composite Sinica,2007,24(6):128-134.
[9]JTG F40—2004,公路沥青路面施工技术规范[S].
JTG F40—2004,Technical Specification for Construction of Highway Asphalt Pavements[S].
[10]ZHU H,NODES J E.Contact Based Analysis of Asphalt Pavement with the Effect of Aggregate Angularity[J].J Mech Mater,2000,32(3):193-202.
[11]SHU X,HUANG B S.Micromechanics-based Dynamic Modulus Prediction of Polymeric Asphalt Concrete Mixtures[J].Composites Part B:Engineering,2008,39(4):704-713.
[12]BARKSDALE R D.The Aggregate Handbook[M].Washington DC:National Stone Association,1991.
[13]李 明,郝 健,刘志强.Superpave 沥青混合料配合比设计应用研究[J].交通科技,2009(1):71-74.
LI Ming,HAO Jian,LIU Zhi-qiang.Application Research on Superpave Mixture Designing[J].Transportation Science & Technology,2009(1):71-74.
[14]沙庆林.多碎石沥青混凝土SAC系列的设计与施工[M].北京:人民交通出版社,2005.
SHA Qing-lin.The Design and Construction of the Series of Stone Asphalt Concrete SAC[M].Beijing:China Communications Press,2005.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家重点基础研究发展计划(“九七三”计划)项目(2009CB623204);浙江省交通科技项目(200561)
{{custom_fund}}
{{custom_fund}}