矩形细杆涡振幅值和驰振性能的对比风洞试验

周帅,陈政清,牛华伟

中国公路学报 ›› 2014, Vol. 27 ›› Issue (1) : 64-75.

PDF全文下载(1055 KB)
PDF全文下载(1055 KB)
中国公路学报 ›› 2014, Vol. 27 ›› Issue (1) : 64-75.
桥梁与隧道工程

矩形细杆涡振幅值和驰振性能的对比风洞试验

  • 周帅,陈政清,牛华伟
作者信息 +

Comparative Experiment on Vortex-induced Vibration Amplitudeand Galloping of Slender Rectangular Cylinder

  • ZHOU Shuai,  CHEN Zheng-qing,  NIU Hua-wei
Author information +
文章历史 +

摘要

为了从试验上研究节段模型风洞试验结果与原型构件实际风振响应的对应关系,基于钢桁架桥梁大长细比杆件的工程背景,采用1根细长矩形钢管开展了原型杆件和按照1∶1比例设计的节段模型的对比测振风洞试验。节段模型与原型杆件具有相同的截面尺寸和基本一致的等效质量、阻尼比以及固有频率。在杆件长边迎风的状态下,原型杆件和节段模型测振风洞试验均实测到了涡激共振区间现象;在杆件短边迎风状态下,均实测到了两者对应的驰振现象。研究结果表明:原型杆件实测的涡激共振位移幅值稍大于节段模型,而两者的驰振性能基本相同。

Abstract

In order to investigate the relationship between section model wind tunnel test results and prototype structure wind induced vibration responses, the comparative experiment was performed. On the basis of engineering background of slender members of steel truss bridges, a slender rectangular cylinder was selected as the prototype structure to conduct the vibration wind tunnel tests. A one to one section model was designed to make sure that the prototype cylinder and the section model shared the same cross section dimension, equivalent mass, damping ratio and natural frequency. The VIV lock-in ranges were both observed when the prototype cylinder and section model faced wind with their long edges and the non-divergent type galloping was measured when they faced wind with their short edges. The results indicate that the prototype cylinder achieves a slightly higher VIV amplitude than the section model; whereas their galloping behaviors are proved to be almost the same.

关键词

桥梁工程 / 矩形细杆 / 风洞试验 / 风振性能 / 涡激共振 / 驰振

Key words

bridge engineering / slender rectangular cylinder / wind tunnel test / wind induced vibration behavior / vortex-induced vibration / galloping

引用本文

导出引用
周帅,陈政清,牛华伟. 矩形细杆涡振幅值和驰振性能的对比风洞试验[J]. 中国公路学报, 2014, 27(1): 64-75
ZHOU Shuai, CHEN Zheng-qing, NIU Hua-wei. Comparative Experiment on Vortex-induced Vibration Amplitudeand Galloping of Slender Rectangular Cylinder[J]. China Journal of Highway and Transport, 2014, 27(1): 64-75

参考文献

 
1] [ZK(#][WB]方秦汉.九江长江大桥柔拱吊杆风致涡振及对策[J].工程力学,1999,16(增):1-6.
FANG Qin-han.Vortex Induced Vibration and Vibration Control Strategies on Flexible Hangers of Jiujiang Bridge[J].Engineering Mechanics,1999,16(S):1-6.
2]高宗余,李龙安,方秦汉,等.钢桁拱桥吊杆风致振动研究[J].武汉理工大学学报:交通科学与工程版,2007,31(2):281-284.
GAO Zong-yu,LI Long-an,FANG Qin-han,et al.Study of Wind-induced Vibration of Suspenders for Steel Truss Arch Bridges[J].Journal of Wuhan University of Technology:Transportation Science & Engineering,2007,31(2):281-284. 
3]GE Y J,XIANG H F.Recent Development of Bridge Aerodynamics in China[J].Journal of Wind Engineering and Industrial Aerodynamics,2008,96(6):736-768.
4]WILLIAMSON C H K,GOVARDHAN R.Vortex-induced Vibrations[J].Annual Review of Fluid Mechanics,2004,36:413-455.
5]SARPKAYA T.A Critical Review of the Intrinsic Nature of Vortex-induced Vibrations [J].Journal of Fluids and Structures,2004,19(4):389-447.
6]BEARMAN P W.Vortex Shedding from Oscillating Bluff Bodies[J].Annual Review of Fluid Mechanics,1984,16:195-222.
7]GRIFFIN O M.Vortex Shedding from Cables and Structures in a Shear Flow:State of the Art [R].Washinton DC:Naval Research Lab,1982.
8]朱乐东.桥梁涡激共振试验节段模型质量系统模拟与振幅修正方法[J].工程力学,2005,22(5):204-208,176.
ZHU Le-dong.Mass Simulation and Amplitude Conversion of Bridge Sectional Model Test for Vortex-excited Resonance[J].Engineering Mechanics,2005,22(5):204-208,176.
9]张志田,陈政清.桥梁节段与实桥涡振幅值的换算关系[J].土木工程学报,2011,44(7):77-82.
ZHANG Zhi-tian,CHEN Zheng-qing.Similarity of Amplitude of Sectional Model to That of Full Bridge in the Case of Vortex-induced Resonance[J].China Civil Engineering Journal,2011,44(7):77-82.
10]ZILLER C,RUSCHEWEYH H.A New Approach for Determining the Onset Velocity of Galloping Instability Taking into Account the Nonlinearity of the Aerodynamic Damping Characteristic[J].Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:303-314.
11]〖JP2〗HORTMANNS M,RUSCHEWEYH H.〖JP〗Development of a Method for Calculating Galloping Amplitudes Considering Nonlinear Aerodynamic Coefficients Measured with the Forced Oscillation Method[J].Journal of Wind Engineering and Industrial Aerodynamics,1997,69-71:251-261.
12]鲜 荣,廖海黎,李明水.大跨主梁沿跨向涡振Scanlan非线性模型应用[J].振动与冲击,2009,28(4):54-58,203.
XIAN Rong,LIAO Hai-li,LI Ming-shui.Application of Scanlans Nonlinear Model to Describe Spanwise Vortex-induced Vibration of a Long-span Bridge Girder[J].Journal of Vibration and Shock,2009,28(4):54-58,203.
13]EHSAN F, SCANLAN R H.Vortex-induced Vibrations of Flexible Bridges[J].Journal of Engineering Mechanics,1990,116(6):1392-1411.
14]许福友,丁 威,姜峰,等.大跨度桥梁涡激振动研究进展与展望[J].振动与冲击,2010,29(10):40-49,249.
XU Fu-you,DING Wei,JIANG Feng,et al.Development and Prospect of Study on Vortex-induced Vibration of Long-span Bridges[J].Journal of Vibration and Shock,2010,29(10):40-49,249.
15]EN 1991-1-4:2004,Eurocode1:Actions on Structures-General Actions Part 1-4:Wind Aceions[S].
16]周 帅,张志田,陈政清,等.大长细比钝体构件涡激共振与驰振的耦合研究[J].工程力学,2012,29(1):176-186.
ZHOU Shuai,ZHANG Zhi-tian,CHEN Zheng-qing,et al.Research on Coupling of the Vortex-excited Resonance and Galloping of the Bluff Body with Large Slenderness Ratio[J].Engineering Mechanics,2012,29(1):176-186.
17]CORLESS R M,PARKINSON G V.A Model of the Combined Effects of Vortex-induced Oscillation and Galloping[J].Journal of Fluids and Structures,1988,2(3):203-220.

基金

国家自然科学基金重点项目(50738002);国家自然科学基金项目(50908085);湖南省研究生创新基金项目(CX2011B154)
PDF全文下载(1055 KB)

1572

Accesses

0

Citation

Detail

段落导航
相关文章

/