为了给邻近斜坡条件下的沉桩设计与施工提供参考,采用改装后的静力触探仪作为沉桩加载设备,对邻近斜坡沉桩挤土进行试验研究。试验装置主要由主体结构、加载系统、土压力测试系统以及位移量测设备组成,具有可确保模型桩连续贯入土体、实现对沉桩速率进行控制、实时监控桩侧挤土压力、动态追踪沉桩过程中桩侧挤土位移等特点。试验结果表明:在桩体贯入过程中,挤土位移的影响范围不断增加,桩周土体的位移模式也随之变化;距桩体及桩端较近范围内的土体,在桩体径向挤压和桩侧摩擦的共同作用下,产生了向下的位移;距桩体距离较远的土体,由于地表及斜边自由边界的存在,表现为竖向隆起位移;在沉桩达到一定深度后,后续沉桩对挤土位移影响较小。研究结果揭示了邻近斜坡沉桩挤土力学响应与坡体变形的内在机理,可为实际工程设计、施工参数设置以及挤土位移控制提供参考。
Abstract
In order to provide reference for design and construction of pile-sinking adjacent to slope, using the modified static cone penetration equipment as loading system, the squeezing effect during pile-sinking adjacent to slope was studied. This test equipment is composed of main structure, loading system, soil pressure measuring system and displacement measuring system, with the following features: enabling the model pile to penetrate continuously into the soil; controlling the speed of pile sinking; monitoring the soil squeezing pressure and tracing the process of soil squeezing displacement during pile-sinking. The results indicate that the size of the influence zone, in which soil squeezing displacement is obvious, continues to increase with the penetration of pile, and the displacement mode around pile changes as well; the soil adjacent to the pile body settles downward under the radial compression and side friction; however, beyond a certain distance to pile body, heave displacement of the soil is observed due to the free boundary of surface and slope; after the pile reaches the bottom surface of the slope, the subsequent pile sinking has little influence on soil squeezing displacement. The experimental results reveal the soil squeezing performance caused by pile-sinking adjacent to slope and the mechanism for slope deformation, and provide a reference for practical engineering designing, construction parameters setting and soil squeezing displacement controlling.
关键词
道路工程 /
静压沉桩 /
模型试验 /
斜坡 /
挤土位移
{{custom_keyword}} /
Key words
road engineering /
static pressure pile-sinking /
model test /
slope /
soil squeezing displacement
{{custom_keyword}} /
中图分类号:
U416.14
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 饶平平, 李镜培, 张常光.预钻孔对邻近斜坡沉桩挤土影响分析[J].岩土力学, 2012, 33(增2):155-161. RAO Ping-ping, LI Jing-pei, ZHANG Chang-guang.Influence of Prebored Hole on Soil-squeezing Displacement for Pile Sinking Adjacent to Slope[J].Rock and Soil Mechanics, 2012, 33(S2):155-161.
[2] SAGASETA C, WHITTLE A J.Prediction of Ground Movements Due to Pile Driving in Clay[J].Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(1):55-66.
[3] SHENG D, EIGENBROD K D, WRIGGERS P.Finite Element Analysis of Pile Installation Using Large-slip Frictional Contact[J].Computers and Geotechnics, 2005, 32(1):17-26.
[4] BASU P, LOUKIDIS D, PREZZI M, et al.Analysis of Shaft Resistance of Jacked Piles in Sands[J].International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(15):1605-1635.
[5] LEHANE B M, GAVIN K G.Base Resistance of Jacked Pipe Piles in Sand[J].Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(6):473-480.
[6] 张可能, 何 杰, 刘 杰, 等.静压楔形桩沉桩效应模型试验研究[J].中南大学学报:自然科学版, 2012, 43(2):638-643. ZHANG Ke-neng, HE Jie, LIU Jie, et al, Model Experimental Research on Piling Effects of Static Piling in Soft Clay Ground with Tapered Pile[J].Journal of Central South University:Science and Technology, 2012, 43(2):638-643.
[7] ZHANG L M, CHU K H.Lateral Movements of Long-driven Piles During Pile Driving[J].Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(10):1222-1236.
[8] 唐世栋, 杨卫东.挤土桩施工引起的邻桩轴向拉力[J].同济大学学报:自然科学版, 2004, 32(11):1418-1422. TANG Shi-dong, YANG Wei-dong.Axial Tensile Force of Pile Caused by Installing Displacement Pile[J].Journal of Tongji University:Natural Science, 2004, 32(11):1418-1422.
[9] WHITE D J, BOLTON M D.Displacement and Strain Paths During Plane-strain Model Pile Installation in Sand[J].Geotechnique, 2004, 54(6):375-397
[10] 丁佩民, 肖志斌, 施建勇.松砂中大型静压沉桩模型试验桩基挤土加密效应[J].工业建筑, 2003, 33(3):45-48, 62. DING Pei-min, XIAO Zhi-bin, SHI Jian-yong.Model Tests of Large Driven Pile Jacked into Sands and Soil-pile Interaction Finite Element Analysis with Compaction Effects Taken into Account[J].Industrial Construction, 2003, 33(3):45-48, 62.
[11] 周 健, 邓益兵, 叶建忠, 等.砂土中静压桩沉桩过程试验研究与颗粒流模拟[J].岩土工程学报, 2009, 31(4):501-507. ZHOU Jian, DENG Yi-bing, YE Jian-zhong, et al.Experimental and Numerical Analysis of Jacked Piles During Installation in Sand[J].Chinese Journal of Geotechnical Engineering, 2009, 31(4):501-507.
[12] 饶平平.非轴对称边界下扩孔理论及沉桩挤土效应研究[D].上海:同济大学, 2011. RAO Ping-ping.Solution of Cavity Expansion and Squeezing Effect of Compaction Piles Under Non-symmetric Boundary[D].Shanghai:Tongji University, 2011.
[13] 靳志宇.压浆碎石桩技术研究靳志宇[J].筑路机械与施工机械化, 2013, 30(4):59-62. JIN Zhi-yu.Research on Technology of Grouting Gravel Pile[J].Road Machinery & Construction Mechanization, 2013, 30(4):59-62.
[14] 李莲秀, 吴盛伟, 苏英平.桩端后压浆灌注桩承载力的可靠性研究[J].筑路机械与施工机械化, 2013, 30(1):70-72. LI Lian-xiu, WU Sheng-wei, SU Ying-ping.Study on Reliability of Bearing Capacity of Pile-end Post-grouting Boredpile[J].Road Machinery & Construction Mechanization, , 2013, 30(1):70-72.
[15] 李元海.数字照相量测技术及其在岩石土工程实验中的应用[M].徐州:中国矿业大学出版社, 2009. LI Yuan-hai.Study on Digital Photography-based Deformation Measurement Technique and Its Application in Geo-physical Model Experiment[M].Xuzhou:China University of Mining and Technology Press, 2009.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金青年基金项目(51208301);国家自然科学基金项目(41272288);上海高校青年教师培养资助计划项目(SLG12019)
{{custom_fund}}
{{custom_fund}}