附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用

谢文, 孙利民, 魏俊

中国公路学报 ›› 2014, Vol. 27 ›› Issue (3) : 59-70.

PDF全文下载(966 KB)
PDF全文下载(966 KB)
中国公路学报 ›› 2014, Vol. 27 ›› Issue (3) : 59-70.
桥梁工程

附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用

  • 谢文1,2, 孙利民1, 魏俊1
作者信息 +

Experimental Study on Seismic Performance of Bridge Piers with Structural Fuses and Its Application

  • XIE Wen1,2, SUN Li-min1, WEI Jun1
Author information +
文章历史 +

摘要

基于结构“保险丝”概念设计了不同形式桥墩,采用拟静力试验和数值方法研究了此类桥墩的抗震性能及耗能能力,验证了桥墩纤维模型及等效模型的适用性;将试验桥墩原型的纤维和等效模型应用于一座试设计的超大跨斜拉桥纵向地震损伤控制分析中,采用弹塑性方法并引入地震损伤指标评价了耗能型桥墩对桥梁地震损伤的控制效果,结合数值方法和试验结果验证了所提出的地震损伤控制新结构体系的有效性和可行性。结果表明:附有“保险丝”构件的新型耗能桥墩的抗震性能及耗能能力优于传统型独柱式桥墩;采用新型耗能桥墩的损伤控制策略可有效控制主塔损伤,使其满足地震损伤控制目标;桥墩柱间附加的“保险丝”构件不仅可提高桥墩刚度,而且对桥墩具有很好的耗能与保护作用。

Abstract

Pseudo static tests and numerical simulation were used to investigate the seismic performance and energy dissipation capacity of piers designed according to the structural fuse concept. The applicability of fiber and equivalent models for piers was proved to be reasonable according to the experimental results. Both models of the piers were applied in the seismic damage control of a trial-designed long span cable-stayed bridge in the longitudinal direction and the effect of energy dissipation piers on seismic damage control of the bridge was evaluated with elastoplastic method by using seismic damage indices. Furthermore, the proposed new structural system was further verified through combination of the simulation and experimental results. The results show that the seismic performance and energy dissipation capacity of piers with fuse element are superior to a conventional single-column pier; the employment of damage control strategy with energy dissipation piers is effective and feasible to control the seismic damage of towers and meets the damage control targets; the supplemental fuse element between two columns can enhance the stiffness and energy dissipation capacity of piers and mitigate the seismic damage of piers.

关键词

桥梁工程 / 耗能型桥墩 / 抗震性能试验 / 超大跨斜拉桥 / 结构“保险丝”概念 / 地震损伤控制

Key words

bridge engineering / energy dissipation pier / seismic performance test / super long span cable-stayed bridge / structural fuse concept / seismic damage control

引用本文

导出引用
谢文, 孙利民, 魏俊. 附有结构“保险丝”构件的桥墩抗震性能试验研究及其应用[J]. 中国公路学报, 2014, 27(3): 59-70
XIE Wen, SUN Li-min, WEI Jun. Experimental Study on Seismic Performance of Bridge Piers with Structural Fuses and Its Application[J]. China Journal of Highway and Transport, 2014, 27(3): 59-70
中图分类号: U442.55   

参考文献

[1] TILBY C.South Rangitikei Railway Bridge Construction[J].Transactions of the New Zealand Institution of Engineers Incorporated:Civil Engineering Section, 1981, 8(2):33-48.
[2] VARGAS R, BRUNEAU M.Investigation of the Structural Fuse Concept[R].New York:State University of New York, 2006.
[3] TANG M C, MANZANAREZ R, NADER M, et al.Replacing the East Bay Bridge[J].Civil Engineering, 2000, 70(9):38-43.
[4] FAN L C.Life Cycle and Performance Based Seismic Design of Major Bridges in China[J].Frontiers of Architecture and Civil Engineering in China, 2007, 1(3):261-266.
[5] 吕西林, 陈 云, 毛苑君.结构抗震设计的新概念--可恢复功能结构[J].同济大学学报:自然科学版, 2011, 39(7):941-948. LU Xi-lin, CHEN Yun, MAO Yuan-jun.New Concept of Structural Seismic Design:Earthquake Resilient Structures[J].Journal of Tongji University:Natural Science, 2011, 39(7):941-948.
[6] NEES/E-defense.Report of the Seventh Joint Planning Meeting of NEES/E-defense Collaborative Research on Earthquake Engineering[R].Berkeley:University of California, 2010.
[7] ROEDER C W, POPOV E P.Eccentrically Braced Steel Frames for Earthquakes[J].Journal of the Structural Division, 1978, 104(3):391-412.
[8] CONNOR J J, WADA A, IWATA M, et al.Damage-controlled Structures. I:Preliminary Design Methodology for Seismically Active Regions[J].Journal of Structural Engineering, 1997, 123(4):423-431.
[9] WADA A, HUANG Y, IWATA M.Passive Damping Technology for Buildings in Japan[J].Progress in Structural Engineering and Materials, 2000, 2(3):335-350.
[10] FORTNEY P J, SHAHROOZ B M, RASSATI G A.Large-scale Testing of a Replaceable "Fuse" Steel Coupling Beam[J].Journal of Structural Engineering, 2007, 133(12):1801-1807.
[11] VARGAS R, BRUNEAU M.Effect of Supplemental Viscous Damping on the Seismic Response of Structural Systems with Metallic Dampers[J].Journal of Structural Engineering, 2007, 133(10):1434-1444.
[12] VARGAS R, BRUNEAU M.Analytical Response and Design of Buildings with Metallic Structural Fuses.I[J].Journal of Structural Engineering, 2009, 135(4):386-393.
[13] VARGAS R, BRUNEAU M.Experimental Response of Buildings Designed with Metallic Structural Fuses.Ⅱ[J].Journal of Structural Engineering, 2009, 135(4):394-403.
[14] COMBAULT J, PECKER A, TEYSSANDIER J P, et al.Rion-Antirion Bridge, Greece-Concept, Design, and Construction[J].Structural Engineering International, 2005, 1:22-27.
[15] MCDANIEL C C, SEIBLE F.Influence of Inelastic Tower Links on Cable-supported Bridge Response[J].Journal of Bridge Engineering, 2005, 10(3):272-280.
[16] EL-BAHEY S, BRUNEAU M.Bridge Piers with Structural Fuses and Bi-steel Columns.I:Experimental Testing[J].Journal of Bridge Engineering, 2012, 17(1):25-35.
[17] EL-BAHEY S, BRUNEAU M.Bridge Piers with Structural Fuses and Bi-steel Columns.Ⅱ:Analytical Investigation[J].Journal of Bridge Engineering, 2012, 17(1):36-46.
[18] IABSE.Recent Major Bridges[R].Zurich:IABSE, 2009.
[19] INGHAM T J, RODRIGUEZ S, NADER M.Nonlinear Analysis of the Vincent Thomas Bridge for Seismic Retrofit[J].Computers & Structures, 1997, 64(5/6):1221-1238.
[20] 陈永祁, 马良喆.苏通长江大桥限位阻尼器的设计和测试[J].现代交通技术, 2008, 5(4):20-24. CHEN Yong-qi, MA Liang-zhe.Design and Evaluation of Limited Displacement of Damper Sutong Yangtze River Bridge[J].Modern Transportation Technology, 2008, 5(4):20-24.
[21] 叶爱君, 范立础.附加阻尼器对超大跨度斜拉桥的减震效果[J].同济大学学报:自然科学版, 2006, 34(7):859-863. YE Ai-jun, FAN Li-chu.Seismic Response Reduction of a Super-long-span Cable-stayed Bridge by Adding Dampers[J].Journal of Tongji Universty:Natural Science, 2006, 34(7):859-863.
[22] 张喜刚, 裴岷山, 袁 洪, 等.苏通大桥主桥结构体系研究[J].中国工程科学, 2009, 11(3):20-25. ZHANG Xi-gang, PEI Min-shan, YUAN Hong, et al.Study on Structural System of Sutong Bridge[J].Engineering Science, 2009, 11(3):20-25.
[23] SUN L M, XIE W, WEI J.Seismic Damage Control of Long Span Cable-stayed Bridges by Energy Dissipation Subsidiary Piers[C]//IABSE-IASS.IABSE-IASS 2011 London Symposium Report.Wales:Brintex, 2011:262-269.
[24] PARK Y J, ANG A H S.Mechanistic Seismic Damage Model for Reinforced Concrete[J].Journal of Structural Engineering, 1985, 111(4):722-739.
[25] PARK Y J, ANG A H S, WEN Y K.Seismic Damage Analysis of Reinforced Concrete Buildings[J].Journal of Structural Engineering, 1985, 111(4):740-757.
[26] KUNNATH S K, REINHORN A M, LOBO R F.IDARC Version 3.0:A Program for the Inelastic Damage Analysis of RC Structures[R].Buffalo:State University of New York, 1992.
[27] PARK Y J, ANG A H S, WEN Y K.Damage-limiting Aseismic Design of Buildings[J].Earthquake Spectra, 1987, 3(1):1-26.
[28] EL-BAHEY S, BRUNEAU M.Buckling Restrained Braces as Structural Fuses for the Seismic Retrofit of Reinforced Concrete Bridge Bents[J].Engineering Structures, 2011, 33(3):1052-1061.
[29] 孙利民, 魏 俊.大跨度斜拉桥耗能型辅助墩抗震性能试验研究[J].同济大学学报:自然科学版, 2013, 41(9):1333-1340. SUN Li-min, WEI Jun.Experimental Investigation on Seismic Performance of Energy Dissipation Subsidiary Piers for Long-span Cable-stayed Bridges[J].Journal of Tongji University:Natural Science, 2013, 41(9):1333-1340.
[30] 孙 斌.超千米级斜拉桥结构体系研究[D].上海:同济大学, 2008. SUN Bin.Study of Structural Systems for Cable-Stayed Bridge with Ultra Kilometer Span[D].Shanghai:Tongji University, 2008.
[31] FILIPPOU F C, POPOV E P, BERTERO V V.Effects of Bond Deterioration on Hysteretic Behavior of Reinforced Concrete Joints[R].Berkeley:Earthquake Engineering Research Center, 1983.
[32] MANDER J B, PRIESTLEY M J N, PARK R.Theoretical Stress-strain Model for Confined Concrete[J].Journal of Structural Engineering, 1988, 114(8):1804-1826.
[33] JTG/T B02-01-2008, 公路桥梁抗震设计细则[S]. JTG/T B02-01-2008, Guideline for Seismic Design of Highway Bridges[S].

基金

国家自然科学基金项目(90915011,91315301)
PDF全文下载(966 KB)

2262

Accesses

0

Citation

Detail

段落导航
相关文章

/