在分析影响隧道瓦斯浓度主要因素的基础上,以掘进长度200 m为例,选取风筒直径、风筒口距掌子面的距离以及风筒悬挂位置3个主要影响因素,并选取合理的水平进行正交试验设计;依据重庆某瓦斯隧道施工参数,建立了瓦斯隧道施工通风数值模拟模型;采用多轮正交数值模拟试验方法,获得各因素对隧道瓦斯浓度影响的重要性顺序和风筒最优化设置方案,并对风筒最优化设置方案进行现场试验验证。结果表明:在风量大小、瓦斯溢出量、瓦斯溢出位置一定的前提条件下,影响隧道掌子面瓦斯浓度因素的主次顺序依次为风筒直径、风筒悬挂位置、风筒口距掌子面距离;风筒优化设置后现场瓦斯浓度降低了37%,且隧洞内各处瓦斯浓度低于0.5%,符合规范要求。
Abstract
Based on the analysis result of primary factors influencing gas concentration of tunnel, taking tunneling length of 200 meters as an example, three impact factors were selected, which were diameter of air duct, the distance from venting duct to tunnel face and the position where air duct hangs, and reasonable levels were chosen to carry out an orthogonal experimental design. A numerical simulation model of construction ventilation of gas tunnel was established based on construction parameters of a Chongqing gas tunnel. With several rounds of orthogonal numerical simulation experiment method, the importance sequence of each impact factor on gas concentration of tunnel and the most optimized setting of air duct were obtained and the optimized solution was verified through experiment. The results show that under the fixed condition of air volume, gas pressure and gas overflow quantity, the importance sequence of impact factor is diameter of air duct, the position where air duct hangs and the distance from venting duct to tunnel face. The gas concentration is reduced by 37% and below 0.5% in the tunnel after optimizing air duct setting, which is conformed to the requirements of the specification.
关键词
隧道工程 /
风筒优化 /
数值模拟 /
正交试验 /
瓦斯隧道
{{custom_keyword}} /
Key words
tunnel engineering /
air duct optimization /
numerical simulation /
orthogonal experiment /
gas tunnel
{{custom_keyword}} /
中图分类号:
U453.5
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 王永东,夏永旭.公路隧道纵向通风数值模拟[J].中国公路学报,2002,15(1):82-85. WANG Yong-dong,XIA Yong-xu.Numerical Simulation of Longitudinal Ventilation of Highway Tunnel[J].China Journal of Highway and Tansport,2002,15(1):82-85.
[2] 刘惠兴,李晓龙.公路长隧道施工通风技术分析[J].筑路机械与施工机械化,2013,30(7):81-84. LIU Hui-xing,LI Xiao-long.Technical Analysis of Ventilation During Construction of Long Highway Tunnel[J].Road Machinery & Construction Mechanization,2013,30(7):81-84.
[3] 王晓珍.煤巷掘进过程中粉尘浓度影响因素分析[J].中国安全生产科学技术,2011,7(4):75-79. WANG Xiao-zhen.Analysis of Dust Concentration Influence Factor in Coal Roadway Driving[J].Journal of Safety Science and Technology,2011,7(4):75-79.
[4] 方勇,彭佩,赵子成,等.风管出口位置对隧道施工通风效果影响的研究[J].地下空间与工程学报,2014,10(2):468-473. FANG Yong,PENG Pei,ZHAO Zi-cheng,et al.Numerical Simulation of the Effect of Outlet Position of Air Duct on the Construction Ventilation of the Tunnel[J].Chinese Journal of Underground Space and Engineering,2014,10(2):468-473.
[5] 董亮,刘厚林,谈明高,等.一种验证网格质量与CFD计算精度关系的方法[J].中南大学学报:自然科学版,2012,43(11):4293-4299. DONG Liang,LIU Hou-lin,TAN Ming-gao,et al.A Method for Confirming Relationship Between Mesh Quality Measures and CFD Numerical Accuracy[J].Journal of Central South University:Science and Technology,2012,43(11):4293-4299.
[6] 高建良,张艳利.第1层网格节点位置对局部通风流场解算结果的影响[J].安全与环境学报,2010,10(5):150-152. GAO Jian-liang,ZHANG Yan-li.Influence of Position of First Layer of Nodes to Numerical Simulation Result of Airflow at Working Face with Auxiliary Ventilation[J].Journal of Safety and Environment,2010,10(5):150-152.
[7] 王国富,王志忠.应用统计[M].长沙:中南大学出版社,2003. WANG Guo-fu,WANG Zhi-zhong.Applied Statistics[M].Changsha:Central South University Press,2003.
[8] TB 10120-2002,铁路瓦斯隧道技术规范[S]. TB 10120-2002,Technical Code for Railway Tunnel with Gas[S].
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金重大项目(50490274);湖南省自然科学基金项目(06JJ3030)
{{custom_fund}}
{{custom_fund}}