为了通过优化风洞抽吸系统参数来改善抽吸效果从而提高汽车模型风洞流场品质,利用风洞试验数据与计算流体动力学仿真方法建立抽吸系统的Kriging近似模型,采用非支配排序遗传算法对抽吸系统参数进行多目标优化,对比分析参数优化前后抽吸系统对MIRA阶梯背模型风洞试验结果所造成的影响,从风洞附面层厚度、模型尾流结构、模型外部压力的变化3个方面探讨了抽吸参数差异引起流场变化的物理机制.结果表明:参数优化后风洞抽吸系统的抽吸效果得到增强,地面附面层厚度减小导致模型底部气流速度增大,尾部负压区增大导致阻力增大,底部前端负压区增大和行李舱盖上方正压区增大导致升力减小.
Abstract
In order to improve the quality of flow field in automotive model wind tunnel through optimizing the parameters of suction system, the wind tunnel experiment data and computational fluid dynamics (CFD) simulation method were used to establish Kriging approximation model of suction system and nondominated sorting genetic algorithm was used in the multi-objective optimization of suction system parameters. Effects of suction system on wind tunnel test results of motor industry research association (MIRA) ladder back model, with and without parameters optimization, were compared and analyzed. The physical mechanism of the flow field variation due to different suction parameters was investigated in terms of the variation of the thickness of the ground boundary layer, the automotive tail flow and the external pressure. The results show that the suction effect is enhanced after parameters optimization. The decrease of the thickness of the ground boundary layer leads to the increase of the flow velocity at the rear of automotive. The increase of rear negative pressure area contributes to the increase of the drag force. The increase of negative pressure area at the front of automotive bottom and increase of positive pressure area above the trunk lid lead to the decrease of lift force.
关键词
汽车工程 /
抽吸系统 /
风洞试验 /
参数优化 /
边界层 /
抽吸率 /
仿真
{{custom_keyword}} /
Key words
automotive engineering /
suction system /
wind tunnel test /
parameter optimization /
boundary layer /
suction rate /
simulation
{{custom_keyword}} /
中图分类号:
U467.13
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] 谷正气.汽车空气动力学[M].北京:人民交通出版社,2005. GU Zheng-qi.Automotive Aerodynamics[M].Beijing: China Communications Press,2005.
[2] 庞加斌,刘晓晖,陈力,等.汽车风洞试验中的雷诺数、阻塞和边界层效应问题综述[J].汽车工程,2009,31(7):609-615. PANG Jia-bin,LIU Xiao-hui,CHEN Li,et al.A Review on Reynolds Number,Blockage and Boundary Layer Effects in Automotive Wind Tunnel Tests[J].Automotive Engineering,2009,31(7):609-615.
[3] 杨志刚,李启良,杨帆.抽吸气体回送位置及流量比例对整车风洞试验段流场影响的研究[J].汽车工程,2010,32(4):283-286,282. YANG Zhi-gang,LI Qi-liang,YANG Fan.A Study on the Effects of Draw-air Flow-back Location and Flow Ratio on the Flow Field in the Test Section of Full Scale Wind Tunnel[J].Automotive Engineering,2010,32(4):283-286,282.
[4] MAEDA K,KITOH K,NOZAKI H,et al.Correlation Tests Between Japanese Full-scale Automotive Wind Tunnels Using the Correction Methods for Drag Coefficient[J].SAE Paper 2005-01-1457.
[5] 杨炯,梁鉴,李征初.活动地板关键技术研究[J].实验流体力学,2008,22(4):68-71. YANG Jiong,LIANG Jian,LI Zheng-chu.Key Technical Research on Developing Moving Belt Ground Proximity[J].Journal of Experiments in Fluid Mechanics,2008,22(4):68-71.
[6] STERNÉUS J,WALKER T,BENDER T.Upgrade of the Volvo Cars Aerodynamic Wind Tunnel[J].SAE Paper 2007-01-1043.
[7] WIEDEMANN J,POTTHOFF J.The New 5-Belt Road Simulation System of the IVK Wind Tunnels-Design and First Results[J].SAE Paper 2003-01-0429.
[8] 杨帆,李启良,陈枫,等.分布抽吸率对整车风洞试验段流场影响的数值模拟[J].计算机辅助工程,2008,17(4):36-40. YANG Fan,LI Qi-liang,CHEN Feng,et al.Numerical Simulation on Influence of Distributed Suction Rate on Flow Field in Test Section of Full Scale Wind Tunnel[J].Computer Aided Engineering,2008,17(4):36-40.
[9] LIETZ R L.Vehicle Aerodynamic Shape Optimization[J].SAE Paper 2011-01-0169.
[10] DEB K,AGRAWAL S,PRATAP A,et al.A Fast Elitist Non-dominated Sorting Genetic Algorithm for Multi-objective Optimization:NSGA-Ⅱ[J].Lecture Notes in Computer Science,2000,1917:849-858.
[11] MITRA K,GOPINATH R.Multiobjective Optimization of an Industrial Grinding Operation Using Elitist Nondominated Sorting Genetic Algorithm[J].Chemical Engineering Science,2004,59(2):385-396.
[12] 姜叶洁,宋昕,张清林.基础抽吸率对汽车风洞试验的影响[J].湖南科技大学学报:自然科学版,2012,27(2):45-49. JIANG Ye-jie,SONG Xin,ZHANG Qing-lin.Effects of Distribute Suction Rate on Vehicle Wind Tunnel Test[J].Journal of Hunan University of Science & Technology:Natural Science Edition,2012,27(2):45-49.
[13] ZHANG Y,ZHANG Z,LI J,et al.Test Process and Correction of Automotive Wind Tunnel in Jilin University China[J].SAE Paper 2013-01-1351.
[14] 庞加斌,林志兴,余卓平,等.TJ-2风洞汽车模型试验的修正方法[J].汽车工程,2002,24(5):371-375. PANG Jia-bin,LIN Zhi-xing,YU Zhuo-ping,et al.Correction Methods for Automotive Model Tests in TJ-2 Wind Tunnel[J].Automotive Engineering,2002,24(5):371-375.
[15] BUCHHEIM R,UNGER R,JOUSSERANDOT P,et al.Comparison Tests Between Major European and North American Automotive Wind Tunnels[J].SAE Paper 830301.
[16] BUCHHEIM R,UNGER R,CARR G W,et al.Comparison Tests Between Major European Automotive Wind Tunnels[J].SAE Paper 800140.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
国家自然科学基金项目(51375155);湖南省自然科学基金项目(12JJ3041)
{{custom_fund}}
{{custom_fund}}