模拟环境中混凝土与环境间水分传输边界条件

刘鹏, 余志武, 王卫仑, 陈颖

中国公路学报 ›› 2015, Vol. 28 ›› Issue (5) : 108-116,124.

PDF全文下载(950 KB)
PDF全文下载(950 KB)
中国公路学报 ›› 2015, Vol. 28 ›› Issue (5) : 108-116,124.
桥梁工程

模拟环境中混凝土与环境间水分传输边界条件

  • 刘鹏1,2,3,4, 余志武1,2, 王卫仑3, 陈颖1,2
作者信息 +

Moisture Transmission Boundary Condition Between Concrete and Artificial Simulation Environment

  • LIU Peng1,2,3,4, YU Zhi-wu1,2, WANG Wei-lun3, CHEN Ying1,2
Author information +
文章历史 +

摘要

为了探讨模拟环境中混凝土表面与环境间水分传输边界条件,通过模拟试验分析了混凝土的干燥失水变化规律,研究了水灰比和温度等对混凝土水分扩散表面因子变化的影响;此外,还利用数值模拟探讨了人工模拟环境中风速对混凝土水分扩散表面因子和混凝土内湿度分布状态的影响。结果表明:所提出的人工模拟环境中混凝土水分传输表面因子模型可描述温度和风速对混凝土表面因子的影响规律;混凝土表面孔隙面积率可用以表征水灰比对其表面水分传输的影响,且两者间呈指数函数关系;若人工模拟环境中风速和干燥时间超过某定值(约为3 m·s-1),则可将环境湿度视为混凝土与环境间的界面湿度,可为确定人工模拟试验环境风速参数提供理论依据。

Abstract

In order to investigate the moisture transmission boundary condition between concrete surface and artificial simulation environment, with the simulation test, the law of drying process in concrete under artificial simulation environment was analyzed. The influences of water to cement ratio and temperature on the surface factor were investigated. Moreover, the impact of wind speed on the surface factor and the moisture distribution in concrete was investigated by means of numerical simulation. The results show that the influences of temperature and wind speed on the concrete surface factor can be described by the concrete moisture transmission surface factor model under artificial simulation environment. Meanwhile, the concrete surface pore area ratio is recommended as a parameter to characterize the effect of water to cement ratio on the concrete moisture transmission surface factor, and correlation of them exactly follows exponential function. When wind speed and drying time are more than a certain fixed value such as 3 m·s-1, the humidity of artificial simulation environment can be regarded as the interface humidity between concrete and environment. From above research, the theoretical basis for the wind speed value in artificial simulation environment is determined.

关键词

桥梁工程 / 水分传输 / 试验研究 / 边界条件 / 表面因子

Key words

bridge engineering / moisture transmission / experimental research / boundary condition / surface factor

引用本文

导出引用
刘鹏, 余志武, 王卫仑, 陈颖. 模拟环境中混凝土与环境间水分传输边界条件[J]. 中国公路学报, 2015, 28(5): 108-116,124
LIU Peng, YU Zhi-wu, WANG Wei-lun, CHEN Ying. Moisture Transmission Boundary Condition Between Concrete and Artificial Simulation Environment[J]. China Journal of Highway and Transport, 2015, 28(5): 108-116,124
中图分类号: U445.75   

参考文献

[1] TAMIMI A K,ABDALLA J A,SAKKA Z I.Prediction of Long Term Chloride Diffusion of Concrete in Harsh Environment[J].Construction and Building Materials,2008,22(5):829-836.
[2] CEB-FIP Model Code 1990,Design Code[S].
[3] 弗兰克 P 莫克鲁佩勒,大卫 P 德维特,狄奥多尔 L伯格曼,等.传热和传质基本原理[M].葛新石,叶 宏,译.北京:化学工业出版社,2007. INCROPERA F P,DEWITT D P,BERGMAN T L,et al.Fundamentals of Heat and Mass Transfer[M].Translated by GE Xin-shi,YE Hong.Beijing:Chemical Industry Press,2007.
[4] 王补宣.工程传热传质学[M].北京:科学出版社,2002. WANG Bu-xuan.Engineering Heat and Mass Transfer Theory[M].Beijing:Science Press,2002.
[5] GUMMERSON R J,HALL C,HOFF W D,et al.Unsaturated Water Flow Within Porous Materials Observed by NMR Imaging[J].Nature,1979,281:56-57.
[6] LI Ke-fei,LI Chun-qiu,CHEN Zhao-yuan.Influential Depth of Moisture Transport in Concrete Subject to Drying-wetting Cycles[J].Cement and Concrete Composites,2009,31(10):693-698.
[7] 李春秋.干湿交替下表层混凝土中水分与离子传输过程研究[D].北京:清华大学,2009. LI Chun-qiu.Study on Water and Ionic Transport Processes in Concrete Cover Under Drying-wetting Cycles[D].Beijing:Tsinghua University,2009.
[8] HB 5194—1981,周期浸润腐蚀试验方法[S]. HB 5194—1981,Cycle Infiltration Corrosion Test Method[S].
[9] TB/T 2375—93,铁路用耐候钢周期浸润腐蚀试验方法[S]. TB/T 2375—93,Railway with Weathering Steel Cycle Infiltration Corrosion Test Method[S].
[10] GB/T 10125—1997,人造气氛腐蚀试验——盐雾试验[S]. GB/T 10125—1997,Corrosion Tests in Artificial Atmospheres-Salt Spray Test[S].
[11] 卢振永.氯盐腐蚀环境的人工模拟试验方法[D].杭州:浙江大学,2007. LU Zhen-yong.Artificial Simulation Test Method for Chlorine Salt Corrosion Environment[D].Hangzhou:Zhejiang University,2007.
[12] SWAMY R N,TANIKAWA S.An External Surface Coating to Protect Concrete and Steel from Aggressive Environments[J].Materials and Structures,1993,26(8):465-478.
[13] KONIN A,FRANCOIS R,ARLIGUIE G.Penetration of Chloride in Relation to the Microcracking State into Reinforced Ordinary and High Strength Concrete[J].Material and Structures,1998,31(5):310-316.
[14] 彭 智.干湿循环与荷载耦合作用下氯离子侵蚀混凝土模型研究[D].杭州:浙江大学,2010. PENG Zhi.Study on the Model of the Chloride Ion Erosion Concrete Under the Effect of Drying-wetting Cycles and Load[D].Hangzhou:Zhejiang University,2010.
[15] BAZANT Z P,NAJJAR L J.Nonlinear Water Diffusion in Nonsaturated Concrete[J].Material and Structure,1972,5(1):3-20.
[16] YUAN Y,WAN Z L.Prediction of Cracking Within Early-age Concrete Due to Thermal,Drying and Creep Behavior[J].Cement and Concrete Research,2002,32(7):1053-1059.
[17] 黄凤良,夏春梅,陈 敏.确定对流传质系数的膜渗模型[J].南京师范大学学报:工程技术版,2007,7(3):26-29. HUANG Feng-liang,XIA Chun-mei,CHEN Min.Film-penetration Method to Determining the Convective Mass Transfer Coefficient[J].Journal of Nanjing Normal University:Engineering and Technology Edition,2007,7(3):26-29.
[18] 高家锐.动量、热量、质量传输原理[M].重庆:重庆大学出版社,1987. GAO Jia-rui.Transfer Principle for Momentum,Heat and Mass[M].Chongqing:Chongqing University Press,1987.
[19] WONG S F,WEE T H,SWADDIWUDHIPONG S,et al.Study of Water Movement in Concrete[J].Magazine of Concrete Research,2001,53(3):205-220.
[20] AKITA H,FUJIWARA T,OZAKA Y.A Practical Procedure for the Analysis of Moisture Transfer Within Concrete Due to Drying[J].Magazine of Concrete Research,1997,49(179):129-137.
[21] 陈敏恒,丛德滋,方图南,等.化工原理[M].北京:化学工业出版社,1999. CHEN Min-heng,CONG De-zi,FANG Tu-nan,et al.Principles of Chemical Engineering[M].Beijing:Chemistry Industry Press,1999.
[22] 张先棹.冶金传输原理[M].北京:冶金工业出版社,2004. ZHANG Xian-zhao.Principles of Metallurgy Transmission[M].Beijing:Metallurgical Industry Press,2004.

基金

国家自然科学基金项目(51278496,51408614,51378312,U1434204);中国铁路总公司科技研究开发计划项目(2014G010-A)
PDF全文下载(950 KB)

1619

Accesses

0

Citation

Detail

段落导航
相关文章

/