高地应力软岩公路隧道泡沫混凝土卸压机理及支护结构研究

柳厚祥, 郑智雄

中国公路学报 ›› 2016, Vol. 29 ›› Issue (11) : 122-129.

PDF全文下载(919 KB)
PDF全文下载(919 KB)
中国公路学报 ›› 2016, Vol. 29 ›› Issue (11) : 122-129.
桥梁与隧道工程

高地应力软岩公路隧道泡沫混凝土卸压机理及支护结构研究

  • 柳厚祥1, 郑智雄1,2
作者信息 +

Research on Mechanism of Pressure Relief and Supporting Structure of Foam Concrete in High Geostress Soft Rock Highway Tunnel

  • LIU Hou-xiang1, ZHENG Zhi-xiong1,2
Author information +
文章历史 +

摘要

针对高地应力软岩隧道围岩稳定性差的问题,基于泡沫混凝土具有防水、保温、抗震、压缩性大和一定延性的特点,采用数值模拟的方法,分析了高地应力软岩公路隧道泡沫混凝土的卸压效应及其影响因素,进而研究泡沫混凝土的力学参数对卸压效果的影响。采用控制变量法计算确定了泡沫混凝土的最佳力学参数取值范围,进而分析得到了高地应力软岩公路隧道的泡沫混凝土卸压机理,根据以上研究成果,构思出一种新型的泡沫混凝土复合式衬砌结构型式——泡沫混凝土复合式衬砌。研究表明:高地应力软岩公路隧道添加泡沫混凝土层后,围岩应力的释放率由普通支护条件下的30%提高至62%,围岩强度应力比由1.92提高至3.74,隧道支护结构承受的荷载平均减小了37.19 MPa;泡沫混凝土的最佳力学参数中弹性模量取400~800 MPa,屈服压应力系数k取0.4~0.6,静水屈服拉应力系数kt取0.1~0.3,单轴抗压强度取2.0~4.0 MPa;利用泡沫混凝土的高压缩力学特性,可诱导隧道围岩进一步产生可控的变形,从而释放围岩应力,减小支护结构荷载;新型衬砌可有效消除高地应力软岩公路隧道运营期间可能出现的局部围岩挤入产生的集中荷载、活动断层的错动引起的剪切变形、围岩的全断面压缩导致的荷载陡增等对隧道支护结构造成的破坏,为高地应力区软岩公路隧道的卸压及支护技术研究提供了新的思路。

Abstract

According to the poor stability of surrounding rock in high geostress soft rock highway tunnel, as well as the foam concrete material characteristics, such as waterproof, thermal insulation, shock resistance, high compressibility and ductility performance, numerical simulation method was adopted to analyze the pressure relief effect and influence factors of foam concrete in the high geostress soft rock highway tunnel. Furthermore, the influences of mechanics parameters of the foam concrete on the pressure relief were investigated. The value-taken ranges for optimum mechanical parameters of foam concrete were determined by variable control method. And then the pressure relief mechanism of the foam concrete was further analyzed. Based on the research achievements, a new type of foam concrete compound lining structure was proposed, namely the foam concrete compound lining. The results show that after adding foam concrete layer to high geostress soft rock highway tunnel, compared with ordinary supporting conditions, the release rate of surrounding rock stress is increased from 30% to 62%, the strength stress ratio of surrounding rock is increased from 1.92 to 3.74, and the load on the support structure of the tunnel averagely reduces 37.19 MPa. The values of optimum mechanical parameters of foam concrete are listed as follows. The range of elastic modulus is 400-800 MPa, that of yield stress coefficient k is 0.4-0.6, that of net water yield tensile stress coefficient kt 0.1-0.3, and that of uniaxial compressive strength 2.0-4.0 MPa. Taking advantage of high compression mechanical characteristics of foam concrete, a further controllable deformation of surrounding rock is deduced so as to release the surrounding rock stress and reduce the load on supporting structure. The new type of compound lining effectively eliminates the concentrated load by the squeeze of local surrounding rock, the shear deformation by active fault dislocation and the tunnel support structure failure led by sharp increase of load which is caused by whole section compression in high geostress soft rock highway tunnel during operation period. This provides a new idea for researches on pressure relief and supporting technology for high geostress soft rock highway tunnel.

关键词

隧道工程 / 泡沫混凝土复合式衬砌 / 数值模拟 / 卸压机理 / 支护结构

Key words

tunnel engineering / foam concrete compound lining / numerical simulation / pressure relief mechanism / support structure

引用本文

导出引用
柳厚祥, 郑智雄. 高地应力软岩公路隧道泡沫混凝土卸压机理及支护结构研究[J]. 中国公路学报, 2016, 29(11): 122-129
LIU Hou-xiang, ZHENG Zhi-xiong. Research on Mechanism of Pressure Relief and Supporting Structure of Foam Concrete in High Geostress Soft Rock Highway Tunnel[J]. China Journal of Highway and Transport, 2016, 29(11): 122-129
中图分类号: U457.3   

参考文献

[1] 谢飞鸿.爆破卸压法改进高应力软岩巷道支护条件[J].兰州铁道学院学报:自然科学版,2001,20(4):70-73. XIE Fei-hong.Blasting Cut Method for Improving Supporting of High-stress Tunnel in the Weak Rock[J].Journal of Lanzhou Railway University:Natural Sciences,2001,20(4):70-73.
[2] 蔡成功.卸压槽防突措施模拟试验研究[J].岩石力学与工程学报,2004,23(22):3790-3793. CAI Cheng-gong.Simulation and Testing Study on Outburst Prevention Measure of Pressure Relief Slots[J].Chinese Journal of Rock Mechanics and Engineering,2004,23(22):3790-3793.
[3] 杨俊杰.井壁环形卸压槽的作用机理分析[J].西安矿业学院学报,1999,19(增):104-107. YANG Jun-jie.The Mechanism Analysis of Circular Relieving Slot on Shaft Lining[J].Journal of Xi'an Mining Institute,1999,19(S):104-107.
[4] 蒋金泉.高应力巷道基角钻孔爆破成缝卸压保护原理与参数[C]//何满潮,蒋宇静.三峡库区地质环境暨第二届中日地层环境力学国际学术讨论会论文集.北京:煤炭工业出版社,1996:206-211. JIANG Jin-quan.Principle and Parameters of Relieving Protect by Drilling and Blasting to from Slot in Base Corner of High Stress Roadways[C]//HE Man-chao,JIANG Yu-jing.Proceedings of International Symposium on Geological Environment of the Three Gorges Reservoir Area and Second Sino-Japan Strata Environment Mechanics.Beijing:China Coal Industry Publishing House,1996:206-211.
[5] 闫鑫.高地应力软岩隧道超前应力释放变形控制机理及技术研究[D].北京:中国铁道科学研究院,2012. YAN Xin.Research on Theory and Technology of Deformation Control by Stress Pre-relief in Soft Rock Tunnel with High Initial Geostress[D].Beijing:China Academy of Railway Sciences,2012.
[6] 陈思宇.平行导洞对高地应力软岩隧道卸压效应的机理分析[D].长沙:长沙理工大学,2013. CHEN Si-yu.Mechanism Analysis of Relief Effect of Parallel Pilot to High Geostress Soft Rock Tunnel[D].Changsha:Changsha University of Science & Technology,2013.
[7] SCHLEISS A J,MANSO P A.Design of Pressure Relief Values for Protection of Steel-lined Pressure Shafts and Tunnels Against Buckling During Emptying[J].Rock Mechanics and Rock Engineering,2012,45(1):11-20.
[8] PARACUELLES R,ANKETELL S.Design and Construction of a Relief Sewer Siphon Under the Santa Clara River by Microtunneling[R].Reston:ASCE,2011.
[9] 汤雷,蒋金平.高地应力条件下围岩稳定性分析及控制[J].辽宁工程技术大学学报:自然科学版,2010,29(1):24-27. TANG Lei,JIANG Jin-ping.Analysis and Control on Stability of Surrounding Rock with High Ground Stress[J].Journal of Liaoning Technical University:Natural Sciences,2010,29(1):24-27.
[10] 赵旭峰.挤压性围岩隧道施工时空效应及其大变形控制研究[D].上海:同济大学,2007. ZHAO Xu-feng.The Temporal and Spatial Effect in Construction and Control of Large Deformation of Tunnels in Squeezing Ground[D].Shanghai:Tongji University,2007.
[11] 仇文革,胡辉,赵斌.长大隧道穿越断层带减震结构数值解析研究[J].岩土工程学报,2013,35(2):252-257. QIU Wen-ge,HU Hui,ZHAO Bin.Numerical Analysis of Damping Structure of Deep Buried Tunnel Crossing Fault Zone[J].Chinese Journal of Geotechnical Engineering,2013,35(2):252-257.
[12] 王树仁,刘招伟,屈晓红,等.软岩隧道大变形力学机制与刚隙柔层支护技术[J].中国公路学报,2009,22(6):90-95. WANG Shu-ren,LIU Zhao-wei,QU Xiao-hong,et al.Large Deformation Mechanics Mechanism and Rigid-gap-flexible-layer Supporting Technology of Soft Rock Tunnel[J].China Journal of Highway and Transport,2009,22(6):90-95.
[13] 赵武胜,陈卫忠,谭贤军,等.高性能泡沫混凝土隧道隔震材料研究[J].岩土工程学报,2013,35(8):1544-1552. ZHAO Wu-sheng,CHEN Wei-zhong,TAN Xian-jun,et al.High Performance Foam Concrete for Seismic Isolation Materials of Tunnels[J].Chinese Journal of Geotechnical Engineering,2013,35(8):1544-1552.
[14] 陈卫忠,田洪铭,杨阜东,等.泡沫混凝土预留变形层对深埋软岩隧道长期稳定性影响研究[J].岩土力学,2011,32(9):2578-2583. CHEN Wei-zhong,TIAN Hong-ming,YANG Fu-dong,et al.Study of Effects of foam Concrete Preset Deformation Layer on Long-term Stability of Deep Soft Rock Tunnel[J].Rock and Soil Mechanics,2011,32(9):2578-2583.
[15] 仇文革,舒磊,胡辉,等.高压缩性混凝土材料在隧道穿越断层带的应用及减震效果研究[J].材料导报,2012,26(10):144-157. QIU Wen-ge,SHU Lei,HU Hui,et al.Application of High Compression Ratio Concrete on Tunnel Crossing Fault Zone and Damping Effect Study[J].Materials Review,2012,26(10):144-157.

基金

国家自然科学基金项目(51408067);湖南省交通科技项目(201331);湖南省教育厅科学研究重点项目(10A007)
PDF全文下载(919 KB)

1312

Accesses

0

Citation

Detail

段落导航
相关文章

/