岩溶隧道断续节理掌子面突水判据及灾变过程

郭佳奇, 陈建勋, 陈帆, 罗彦斌, 刘钦

中国公路学报 ›› 2018, Vol. 31 ›› Issue (10) : 118-129.

PDF全文下载(2471 KB)
PDF全文下载(2471 KB)
中国公路学报 ›› 2018, Vol. 31 ›› Issue (10) : 118-129.
灾害发生机理

岩溶隧道断续节理掌子面突水判据及灾变过程

  • 郭佳奇1,2, 陈建勋1, 陈帆2, 罗彦斌1, 刘钦1
作者信息 +

Water Inrush Criterion and Catastrophe Process of a Karst Tunnel Face with Non-persistent Joints

  • GUO Jia-qi1,2, LUO Yan-bin1, CHEN Fan2, LUO Yan-bin1, LIU Qin1
Author information +
文章历史 +

摘要

为了给岩溶区隧道掌子面突水灾害的预警与防治提供理论支持,针对岩溶隧道掌子面断续节理防突岩体,从断裂力学角度分析了地应力和岩溶水压力等自然营造力作用下断续裂纹的压剪起裂属性以及分支裂纹尖端应力强度因子随水压和支裂纹扩展长度的变化规律,推导了断续节理岩体发生轴向张拉贯通破坏突水的临界水压力。运用两带理论和推导的临界水压力公式,建立了基于最小安全厚度的岩溶隧道掌子面断续节理防突层失稳突水判据,并分析了掌子面前伏岩溶水压力、断续主裂纹长度、断续裂纹排距及裂纹与最大主应力夹角等对防突层最小安全厚度的影响规律。采用可考虑流固耦合效应和岩体结构特征的三维离散元数值分析方法,研究了岩溶隧道近接前方高压富水溶腔顺序开挖中掌子面防突层岩体位移场、渗流场等演化规律及其临突特征。数值模拟结果表明:随着岩溶掌子面的不断推进,掌子面防突层岩体挤出位移逐渐由单一卸荷引起向卸荷和前伏岩溶水压共同影响过渡;掌子面各测点位移及位移增加幅度均持续增大;掌子面挤出位移和掌子面水流速度在突水通道即将形成时出现激增和突升现象,具有明显的突水前兆特征。

Abstract

This study aims to provide theoretical support for early warning and prevention for water inrush of a karst tunnel face. As to the water-resistant rock mass with non-persistent joints ahead of a karst tunnel face, the compressive shear cracking property of non-persistent cracks and the changing law of stress intensity factor at the branch crack tip with water pressure and its extended length were analyzed under karst water pressure and geo-stress from the perspective of fracture mechanics. The critical water pressure of a rock mass with non-persistent joints under axis-tension coalescence mode was deduced. The water inrush and instability criterion of water-resistant strata with non-persistent joints ahead of a karst tunnel face, based on the minimum safety thickness, was established by using the two-band theory and the deduced formula of critical water pressure. The influence of the karst water pressure, length of non-persistent cracks, array pitch of non-persistent cracks, and angle between the crack and the maximum principal stress on the minimum safe thickness of water-resistant strata was discussed. A 3D DEM, considering the fluid-solid coupling effect and structural characteristics of the rock mass, was adopted to study the evolution rule of displacement and seepage fields in the water-resistant rock mass ahead of the tunnel face. The precursory features in sequential excavation of the tunnel working face close to the high pressurized karst cave before it. Based on the results of numerical simulation, the transition from the single effect of unloading on the extrusion displacement of the karst tunnel face to the combined action of unloading and karst water pressure occurs when the karst tunnel face advances. The displacement and its amplitude at each measuring point in the water-resistant strata continue to increase in the excavation process. The extrusion displacement and water flow velocity in the tunnel face suddenly increase when the water inrush pathway is about to form, and this is important precursory information for preventing a water inrush disaster.

关键词

隧道工程 / 突水判据 / 数值模拟 / 岩溶隧道 / 掌子面 / 断续节理防突层 / 灾变过程

Key words

tunnel engineering / water inrush criterion / numerical simulation / karst tunnel / tunnel face / water-resistant strata with non-persistent joints / catastrophe process

引用本文

导出引用
郭佳奇, 陈建勋, 陈帆, 罗彦斌, 刘钦. 岩溶隧道断续节理掌子面突水判据及灾变过程[J]. 中国公路学报, 2018, 31(10): 118-129
GUO Jia-qi, LUO Yan-bin, CHEN Fan, LUO Yan-bin, LIU Qin. Water Inrush Criterion and Catastrophe Process of a Karst Tunnel Face with Non-persistent Joints[J]. China Journal of Highway and Transport, 2018, 31(10): 118-129
中图分类号: U452.27   

参考文献

[1] 李术才,王康,李利平,等.岩溶隧道突水灾害形成机理及发展趋势[J].力学学报,2017,49(1):22-30. LI Shu-cai, WANG Kang, LI Li-ping, et al. Mechanical Mechanism and Development Trend of Water-inrush Disasters in Karst Tunnels[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1):22-30.
[2] 刘招伟.圆梁山隧道岩溶突水机理及其防治对策[D].北京:中国地质大学,2004. LIU Zhao-wei. Karst Waterburst Mechanism and Prevention Countermeasures in Yuanliangshan Tunnel[D]. Beijing:China University of Geosciences, 2004.
[3] 刘继国,朱光义,郭小红,等.厦门海底隧道建设中涌水量流固耦合数值模拟[J].现代隧道技术,2006,43(2):34-37,43. LIU Ji-guo, ZHU Guang-yi, GUO Xiao-hong, et al. Coupled Fluid-mechanical Numerical Simulation on Water Inflow Capacity in Xiamen Subsea Tunnel During Construction[J]. Modern Tunnelling Technology, 2006, 43(2):34-37,43.
[4] 林荣安,刘伯莹.富水淤泥质软土地层盾构隧道管片受力特征研究.中国公路学报,2018,31(9):112-118. LIN Rong-an, LIU Bo-ying. Mechanical Characteristic Investigation of Shield Tunnel Segment in Water-rich Mucky Soft Stratum. China Journal of Highway and Transport, 2018, 31(9):112-118.
[5] 杨寅静.岩溶区隧道突水地质灾害的临界预警特征研究[D].北京:北京交通大学,2011. YANG Yin-jing. Research of the Critical Early Warning Characteristics of Karst Water Inrush Geological Disaster in Tunnel Construction[D]. Beijing:Beijing Jiaotong University, 2011.
[6] 孙谋,刘维宁.高风险岩溶隧道掌子面突水机制研究[J]. 岩土力学,2011,32(4):1175-1180. SUN Mou, LIU Wei-ning. Research on Water Inrush Mechanism Induced by Karst Tunnel Face with High Risk[J]. Rock and Soil Mechanics, 2011, 32(4):1175-1180.
[7] 郭佳奇,李宏飞,陈帆,等.岩溶隧道掌子面防突厚度理论分析[J].地下空间与工程学报,2017,13(5):1373-1380. GUO Jia-qi, LI Hong-fei, CHEN Fan, et al. Theoretical Analysis on Water-resisting Thickness of Karst Tunnel Face[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(5):1373-1380.
[8] YANG Z H, ZHANG J H. Minimum Safe Thickness of Rock Plug in Karst Tunnel According to Upper Bound Theorem[J]. Journal of Central South University, 2016, 23(9):2346-2353.
[9] 干昆蓉,杨毅,李建设.某隧道岩溶突水机理分析及安全岩墙厚度的确定[J].隧道建设,2007,27(3):13-16,50. GAN Kun-rong, YANG Yi, LI Jiang-she. Analysis on Karst Water Inflow Mechanisms and Determination of Thickness of Safe Rock Wall Case Study on a Tunnel[J]. Tunnel Construction, 2007, 27(3):13-16, 50.
[10] 李利平,李术才,张庆松.岩溶地区隧道裂隙水突出力学机制研究[J].岩土力学,2010,31(2):523-528. LI Li-ping, LI Shu-cai, ZHANG Qing-song. Study of Mechanism of Water Inrush Induced by Hydraulic Fracturing in Karst Tunnels[J]. Rock and Soil Mechanics, 2010, 31(2):523-528.
[11] 郭佳奇,乔春生.岩溶隧道掌子面突水机制及岩墙安全厚度研究[J].铁道学报,2012,34(3):105-111. GUO Jia-qi, QIAO Chun-sheng. Study on Water-inrush Mechanism and Safe Thickness of Rock Wall of Karst Tunnel Face[J]. Journal of the China Railway Society, 2012, 34(3):105-111.
[12] 刘招伟,何满潮,王树仁.圆梁山隧道岩溶突水机理及防治对策研究[J].岩土力学,2006,27(2):228-232, 246. LIU Zhao-wei, HE Man-chao, WANG Shu-ren. Study on Karst Waterburst Mechanism and Prevention Countermeasures in Yuanliangshan Tunnel[J]. Rock and Soil Mechanics, 2006, 27(2):228-232, 246.
[13] 李志义,白明洲,许兆义,等.近接溶洞条件下隧道施工掌子面变形破坏特征数值分析[J]. 中国铁道科学,2011,32(4):46-53. LI Zhi-yi, BAI Ming-zhou, XU Zhao-yi, et al. Numerical Analysis on the Features of Deformation and Damage of Tunnel Face in the Course of Construction Under the Condition of Coming Closed to Karst Cave[J]. China Railway Science, 2011, 32(4):46-53.
[14] 陈强.岩溶储气长隧道工程地质系统研究[D].成都:西南交通大学,2005. CHEN Qiang. Systemic Study on Engineering Geology of Long Tunnel in Karst and Gas-storaging Area[D]. Chengdu:Southwest Jiaotong University, 2005.
[15] 倪小东,赵帅龙,王媛.岩体水力劈裂的细观PFC-CFD联合分析[J]. 岩石力学与工程学报2015,34(增2):3862-3871. NI Xiao-dong, ZHAO Shuai-long, WANG Yuan. Numerical Analysis of Hydraulic Fracturing of Rock Mass on Mesoscopic Level by Coupled PFC-CFD Method[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(S2):3862-3871.
[16] 贺振宇,郭佳奇,陈帆,等.隧道典型致灾构造及突水模式分析[J]. 中国地质灾害与防治学报,2017,28(2):97-107. HE Zhen-yu, GUO Jia-qi, CHEN Fan, et al. Analysis of Typical Disaster-causing Structure and Water Inrush Model of Tunnel[J]. Chinese Journal of Geological Hazard and Control, 2017, 28(2):97-107.
[17] 李利平,路为,李术才,等.地下工程突水机理及其研究最新进展[J].山东大学学报:工学版,2010,40(3):104-112,118. LI Li-ping, LU Wei, LI Shu-cai, et al. Research Status and Developing Trend Analysis of the Water Inrush Mechanism for Underground Engineering Construction[J]. Journal of Shandong University:Engineering Science, 2010, 40(3):104-112, 118.
[18] 石少帅.深长隧道充填型致灾构造渗透失稳突涌水机理与风险控制及工程应用[D].济南:山东大学,2014. SHI Shao-shuai. Study on Seepage Failure Mechanism and Risk Control of Water Inrush Induced by Filled Disaster Structure in Deep-long Tunnel and Engineering Applications[D]. Jinan:Shandong University, 2014.
[19] 刘顺桂,刘海宁,王思敬.断续节理直剪试验与PFC2D 数值模拟分析[J]. 岩石力学与工程学报,2008,27(9):1828-1836. LIU Shun-gui, LIU Hai-ning, WANG Si-jing. Direct Shear Tests and PFC2D Numerical Simulation of Intermittent Joints[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9):1828-1836.
[20] 李术才,朱维申.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J]. 岩石力学与工程学报,1999,18(2):142-146. LI Shu-cai, ZHU Wei-shen. Fracture Damage Mechanism of Discontinuous Jointed Rockmass Under the State of Complex Stress and Its Application[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(2):142-146.
[21] 王建秀,冯波,张兴盛,等.岩溶隧道围岩水力破坏机制研究[J]. 岩石力学与工程学报,2010,29(7):1363-1370. WANG Jian-xiu, FENG Bo, ZHANG Xing-sheng, et al. Hydraulic Failure Mechanism of Karst Tunnel Surrounding Rock[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(7):1363-1370.
[22] 郑少河.裂隙岩体渗流场-损伤场耦合理论研究及应用[J]. 岩石力学与工程学报,2001,20(3):422. ZHENG Shao-he. Research on Coupling Theory Between Seepage and Damage of Fractured Rock Mass and Its Application to Engineering[D]. Chinese Journal of Rock Mechanics and Engineering, 2001, 20(3):422.
[23] KEMENY J M. A Model for Nonlinear Rock Deformation Under Compression Due to Sub-critical Crack Growth[J]. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstract, 1991, 28(6):459-467.
[24] 赵延林,曹平,文有道,等.渗透压作用下压剪岩石裂纹损伤断裂机制[J]. 中南大学学报:自然科学版,2008,39(4):838-844. ZHAO Yan-lin, CAO Ping, WEN You-dao et al. Damage Fracture Failure Mechanism of Compressive-shear Rock Cracks Under Seepage Pressure[J]. Journal of Central South University:Science and Technology, 2008, 39(4):838-844.
[25] 刘涛影,曹平,范祥,等.高渗透压条件下裂隙岩体的劈裂破坏特性[J]. 中南大学学报:自然科学版,2012,43(6):2281-2287. LIU Tao-ying, CAO Ping, FAN Xiang, et al. Splitting Failure Properties of Fractured Rock Under High Water Pressure[J]. Journal of Central South University:Science and Technology, 2012, 43(6):2281-2287.
[26] 郭佳奇.岩溶隧道防突厚度及突水机制研究[D].北京:北京交通大学,2011. GUO Jia-qi. Study on Against-inrush Thickness and Waterburst Mechanism of Karst Tunnel[D]. Beijing:Beijing Jiaotong University, 2011.
[27] 徐钟,邓辉,邓书金,等.岩溶隧道涌突水形成机制及岩壁安全厚度研究[J].人民长江,2018,49(3):61-66. XU Zhong, DENG Hui, DENG Shu-jin, et al. Study on Formation Mechanism of Water Gushing in Karst Tunnel and Safety Thickness of Rock Wall[J]. Yangtze River, 2018, 49(3):61-66.
[28] 张梅.岩溶隧道高压富水充填溶腔释能降压新技术[M]. 北京:科学出版社,2010. ZHANG Mei. The New Technology of Energesis and Depressurization of Karst Cavity Filled with High Pressure and Rich Water in Kasrt Tunnel[M]. Beijing:Science Press, 2010.
[29] WANG X Y, WANG M S. Analysis of the Mechanism of Water Inrush in Karst Tunnels[C]//ASCE. Proceedings of the GeoShanghai International Conference. Reston:ASCE, 2006:67-72.
[30] 李术才,袁永才,李利平,等.钻爆施工条件下岩溶隧道掌子面突水机制及最小安全厚度研究[J].岩土工程学报,2015,37(2):313-320. LI Shu-cai, YUAN Yong-cai, LI Li-ping, et al. Water Inrush Mechanism and Minimum Safe Thickness of Rock Wall of Karst Tunnel Face Under Blasting Excavation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2):313-320.
[31] 王建秀,朱合华,唐益群,等. 石灰岩损伤演化的断裂力学模型及耦合方程[J]. 同济大学学报:自然科学版,2004,32(10):1320-1324. WANG Jian-xiu, ZHU He-hua, TANG Yi-qun, et al. Fracture Mechanical Model and Hydrochemical-hydraulic Coupled Damage Evolution Equation of Limestone[J]. Journal of Tongji University:Natural Science:2004, 32(10):1320-1324.
[32] 陈帆.岩溶隧道掌子面断续节理防突岩体突水演化规律[D].焦作:河南理工大学,2018. CHEN Fan. Evolutional Law of Water Inrush of Water-resistant Rock Mass with Non-persistent Joints Ahead of Karst Tunnel Face[D]. Jiaozuo:Henan Polytechnic University, 2018.

基金

国家重点基础研究发展计划("九七三"计划)项目(2013CB036003);国家自然科学基金项目(51778215,41572263)
PDF全文下载(2471 KB)

Accesses

Citation

Detail

段落导航
相关文章

/