水下非接触爆炸冲击作用下悬浮隧道动力响应

罗刚, 潘少康, 周晓军, 陈建勋, 戴兵强

中国公路学报 ›› 2018, Vol. 31 ›› Issue (6) : 244-253.

PDF全文下载(1999 KB)
PDF全文下载(1999 KB)
中国公路学报 ›› 2018, Vol. 31 ›› Issue (6) : 244-253.
隧道工程

水下非接触爆炸冲击作用下悬浮隧道动力响应

  • 罗刚1, 潘少康1, 周晓军2, 陈建勋1, 戴兵强1
作者信息 +

Dynamic Response of a Submerged Floating Tunnel During Non-contact Underwater Explosions

  • LUO Gang1, PAN Shao-kang1, ZHOU Xiao-jun2, CHEN Jian-xun1, DAI Bing-qiang1
Author information +
文章历史 +

摘要

为了研究水中悬浮隧道在近场非接触爆炸荷载作用下的运动学及动力学行为规律,通过任意拉格朗日欧拉耦合算法处理流固耦合和强间断流场模拟问题,采用Jones-Wilkins-Lee (JWL)方程和Mie-Gruenisen状态方程分别模拟爆生气体和水的压力,并利用基于势流理论和边界元法的LS-DYNA有限元动力学程序实现上述问题求解计算,分析锚索支撑体系、炸药量和爆心距离对悬浮隧道结构位移、速度、加速度和应力的影响。结果表明:非接触爆炸冲击作用下,3种支撑体系的差异对悬浮隧道管段的位移、速度、加速度和应力影响较小,相同爆炸荷载作用下垂直支撑锚索的轴力远小于其他2种工况(组合支撑和倾斜支撑),组合支撑体系和倾斜支撑体系比垂直支撑体系锚索轴力最大值要大296%和283%;管体的位移、速度和应力随着炸药量增加近似呈线性增加,加速度近似呈抛物线增加,200,500 kg炸药引起的管段跨中加速度比100 kg炸药引起的加速度大26.2%和223%,炸药量是影响悬浮隧道结构安全性的关键因素;管段位移、速度、加速度和应力随着爆心距增加而近似呈幂函数下降;与2 m爆心距相比,5,10,20 m工况时加速度峰值分别下降了73.2%、94.2%、97.5%;通过回归分析和拟合函数可计算满足结构安全的允许炸药量和安全距离,进而为非接触爆炸荷载作用下悬浮隧道的安全性评价提供依据。

Abstract

To study the regularity of the kinematics and dynamics of a submerged floating tunnel (SFT) subjected to near-field non-contact underwater explosions, fluid-solid coupling was employed and the problem of how to simulate a flow field with strong discontinuities was considered using the Arbitrary Lagrange Euler (ALE) coupling method. Explosive gas and water pressures were simulated using the Jones-Wilkins-Lee (JWL) and Mie-Gruenisen equations, respectively. To calculate the aforementioned problems, the LS-DYNA finite element kinetics program based on the potential flow theory and boundary element method was adopted. This study investigated the effects of three support systems (vertical, inclined, and combine the two cases) as well as the explosive quality and distance to the explosion center based on the displacement, velocity, acceleration, and stress of the SFT. The results indicated that after a non-contact explosion, the three support systems had a slightly different effects on the displacement, velocity, acceleration, and stress of the SFT. The cable axial force of the vertical support system was considerably less than that of the other two cases under the same explosive load. Compared with that of the vertical support system, the maximum cable axial force of the combined and inclined support systems was 296% and 283% higher, respectively. The displacement, velocity, and stress of the SFT increased linearly with increased explosive quality, and the acceleration was approximated by a parabolic increase. The accelerations of the SFT at midspan caused by the 200 kg and 500 kg explosives were 26.2% and 223% greater, respectively, than the acceleration caused by the 100 kg explosives. The explosive quality was a key factor that affected the security and stability of the SFT structure. The displacement, velocity, acceleration, and stress of the SFT experienced a reduction in power function with the increase in distance to the explosion center. In terms of acceleration, compared with the 2 m distance to the explosion center, the acceleration peaks were reduced by 73.2%, 94.2%, and 97.5% under the 5 m, 10 m, and 20 m operating conditions, respectively. In addition, the allowable explosive quality and safety distance were calculated by regression analysis and by using a fitting function, which provided a basis for a security evaluation of the SFT under a non-contact underwater explosion load.

关键词

隧道工程 / 水下非接触爆炸 / LS-DYNA程序 / 悬浮隧道 / 爆炸动力响应

Key words

tunnel engineering / non-contact underwater explosion / LS-DYNA program / submerged floating tunnel / explosive dynamic response

引用本文

导出引用
罗刚, 潘少康, 周晓军, 陈建勋, 戴兵强. 水下非接触爆炸冲击作用下悬浮隧道动力响应[J]. 中国公路学报, 2018, 31(6): 244-253
LUO Gang, PAN Shao-kang, ZHOU Xiao-jun, CHEN Jian-xun, DAI Bing-qiang. Dynamic Response of a Submerged Floating Tunnel During Non-contact Underwater Explosions[J]. China Journal of Highway and Transport, 2018, 31(6): 244-253
中图分类号: U451   

参考文献

[1] AHRENS D, GURSOY A. Immersed and Floating Tunnels, Second Edition. Chapter10:Submerged Floating Tunnels-A Concept Whose Time has Arrived[J]. Tunneling & Underground Space Technology Special Edition, 1997, 12(2):317-336.
[2] 罗刚.水中悬浮隧道绕流场特性与锚索疲劳损伤研究[D].成都:西南交通大学,2013. LUO Gang. Study on Characteristic of Flow-field Around Submerged Floating Tunnel and Fatigue Damage of Its Cable[D]. Chengdu:Southwest Jiaotong University, 2013.
[3] 董满生,葛斐,惠磊,等.水中悬浮隧道研究进展[J].中国公路学报,2007,20(4):101-107. DONG Man-sheng, GE Fei, HUI Lei, et al. Research Progress in Submerged Floating Tunnels[J]. China Journal of Highway and Transport, 2007, 20(4):101-107.
[4] 项贻强,陈政阳,杨赢.悬浮隧道动力响应分析方法及模拟的研究进展[J].中国公路学报,2017,30(1):69-76. XIANG Yi-qiang, CHEN Zheng-yang, YANG Ying. Research Development of Method and Simulation for Analyzing Dynamic Response of Submerged Floating Tunnel[J]. China Journal of Highway and Transport, 2017, 30(1):69-76.
[5] 罗刚,周晓军,李登峰,等.不同断面悬浮隧道绕流特性分析[J].铁道学报,2013,35(1):115-120. LUO Gang, ZHOU Xiao-jun, LI Deng-feng, et al. Analysis on Characteristics of Flow Passing Submerged Floating Tunnels of Different Sections[J]. Journal of the China Railway Society, 2013, 35(1):115-120.
[6] 罗刚,周晓军,王爽.悬浮隧道锚索涡激振动影响因素分析[J].土木建筑与环境工程,2013,35(3):51-56. LUO Gang, ZHOU Xiao-jun, WANG Shuang. Parametric Analysis of the Cable's Vortex-induced Vibration of Submerged Floating Tunnel[J]. Journal of Civil Architectural & Environmental Engineering, 2013, 35(3):51-56.
[7] 惠磊,葛斐,洪友士.水中悬浮隧道在冲击载荷作用下的计算模型与数值模拟[J].工程力学,2008,25(2):209-213. HUI Lei, GE Fei, HONG You-shi. Calculation Model and Numerical Simulation of Submerged Floating Tunnel Subjected to Impact Loading[J]. Engineering Mechanics, 2008, 25(2):209-213.
[8] SEO S, MUN H, LEE J, et al. Simplified Analysis for Estimation of the Behavior of a Submerged Floating Tunnel in Waves and Experimental Verification[J]. Marine Structures, 2015, 44:142-158.
[9] HONG K Y, LEE G H. Collision Analysis of Submerged Floating Tunnel by Underwater Navigating Vessel[J]. Journal of the Computational Structural Engineering Institute of Korea, 2014, 27(5):369-377.
[10] 张嫄,董满生,唐飞.冲击荷载作用下水中悬浮隧道的位移响应[J].应用数学和力学,2016,37(5):483-491. ZHANG Yuan, DONG Man-sheng, TANG Fei. Displacement Responses of Submerged Floating Tunnels Under Impact Loads[J]. Applied Mathematics and Mechanics, 2016, 37(5):483-491.
[11] XIANG Yi-qiang, YANG Ying. Spatial Dynamic Response of Submerged Floating Tunnel Under Impact Load[J]. Marine Structures, 2017, 53:20-31.
[12] 吴宗铎.变参数状态方程下多介质Riemann问题的质量分数方法及应用[D].大连:大连理工大学,2013. WU Zong-duo. A Mass Fraction Method for Multi-Component Riemann Problem Under Variable-parameter Equation of State and Its Applications[D].Dalian:Dalian University of Technology, 2013.
[13] 方斌,朱锡,张振华,等.水下爆炸冲击波数值模拟中的参数影响[J].哈尔滨工程大学学报,2005,26(4):419-424. FANG Bin, ZHU Xi, ZHANG Zhen-hua. Effect of Parameters in Numerical Simulation of Underwater Shock Wave[J]. Journal of Harbin Engineering University, 2005, 26(4):419-424.
[14] 闫伟杰.水下爆炸数值模拟研究[D].长沙:国防科学技术大学,2007. YAN Wei-jie. Numerical Simulation Study of Underwater Explosion[D]. Changsha:National University of Defense Technology, 2007.
[15] JAKOBSEN S E, LARSEN P N, SUNDET E. Development of Concept for a Floating Bridge for Crossing the Sognefjord in Norway[J]. IABSE Symposium, 2013, 101(5):1-5.
[16] 黄建松,华宏星,周建鹏.水下爆炸引起舰船冲击人体损伤生物力学模型研究进展[J].医用生物力学,2008,23(4):321-326. HUANG Jian-song, HUA Hong-xing, ZHOU Jian-peng. Advances in Biomechanical Models of Human Body Injuries Caused by Underwater Explosion[J].Medical Biomechanics, 2008, 23(4):321-326.

基金

国家自然科学基金项目(51708042,51508037)
PDF全文下载(1999 KB)

1503

Accesses

0

Citation

Detail

段落导航
相关文章

/