2021年, 第34卷, 第8期 刊出日期:2021-08-20
  

  • 全选
    |
    目录
  • 中国公路学报. 2021, 34(8): 0-0.
    摘要 ( ) PDF全文 ( )   可视化   收藏
  • 中国公路学报. 2021, 34(8): 0-0.
    摘要 ( ) PDF全文 ( )   可视化   收藏
  • 中国公路学报. 2021, 34(8): 0-0.
    摘要 ( ) PDF全文 ( )   可视化   收藏
    工程材料是工程结构赖以发展的物质基础,新材料的研发与应用是工程结构发展和创新的最重要原动力之一。近年来,我国桥梁工程得以高质量快速发展,成就举世瞩目。同时,“一带一路”合作倡议和交通强国等国家重大战略的提出与推进为我国桥梁工程从“并跑”到“领跑”新的历史发展阶段提供了重大机遇,从“建设为主”向“建养并重”转型成为共识,关键转型期的特定历史发展阶段则对桥梁结构的安全、经济、耐久和环保提出了新的挑战。超高性能混凝土(UHPC)作为新一代高性能水泥基材料,具有超高的力学性能和超强的耐久性能,UHPC在新建结构和既有结构加固改造中的应用,有望从源头上解决传统混凝土结构自重大、易开裂、耐久性不足、维护费用高等共性难题,驱动桥梁工程的高质量发展。
    近年来,UHPC材料与结构已成为热点研究方向,相关论文与专利数量呈指数型增长。为充分展示我国UHPC材料及其在桥梁工程领域应用的最新研究成果,及时总结该领域的前沿动态和关键技术,推动理论与技术创新,《中国公路学报》编辑部邀请湖南大学邵旭东教授、黄政宇教授,西南交通大学张清华教授,北京工业大学韩强教授,同济大学王俊颜特聘研究员作为组稿负责人,共同向该领域的知名专家、学者约稿,出版本期“UHPC材料及其在桥梁工程中的应用”专刊。本专刊共收到相关论文100余篇,最终录用21篇。研究内容主要集中于以下几个方面:
    (1) UHPC应用基础理论研究。聚焦UHPC材料应用基础理论研究,主要内容包括:UHPC中钢纤维应用研究的最新进展、UHPC力学性能的多指标分级、室内环境下UHPC的收缩徐变试验和预测等。
    (2) UHPC构件受力性能与设计方法。主要内容涵盖UHPC关键受力构件的力学行为和设计方法,包括:钢筋UHPC矩形截面受弯构件钢筋应力的简化计算、UHPC微裂纹在蒸汽环境中的快速愈合机制、UHPC构件受拉性能的细观力学解析方法、不同配箍率和钢纤维掺量UHPC柱抗震性能试验、UHPC直剪性能试验与直剪承载力计算方法、UHPC双向板抗冲切性能试验、配筋UHPC矩形梁抗扭承载性能试验与计算方法等。
    (3) UHPC-NC/RC组合结构研究。UHPC与混凝土(NC)/钢筋混凝土(RC)组成组合结构,是UHPC在桥梁工程中的重要应用领域之一。主要内容包括:U形UHPC永久模板RC无腹筋组合梁抗剪性能试验、UHPC模壳-RC叠合盖梁受力性能试验、预制UHPC模壳设计方法及其对RC桥墩性能增强分析、UHPC-NC键槽界面抗剪性能研究、UHPC加固盾构隧道衬砌结构试验等。
    (4)钢-UHPC组合结构研究。结构钢与UHPC组成新型组合结构具有优越性能,是未来的重要发展方向。主要内容包括:UHPC中MCL形组合销的抗剪性能研究、钢-UHPC华夫板组合梁负弯矩区抗弯性能试验、钢-UHPC连续组合梁抗弯性能试验、组合梁负弯矩区UHPC接缝抗弯性能试验、UHPC中短栓钉抗剪性能试验及理论分析、钢板条-UHPC组合桥面结构静力及疲劳试验等。
    UHPC材料及其在桥梁工程中应用的基础理论、关键技术和结构创新,是实现我国桥梁工程高性能化的重要支撑。《中国公路学报》将持续关注该领域的国内外最新研究进展,以期为广大专家、学者及工程技术人员提拱学习、交流的平台,促进我国桥梁建设事业的高质量与可持续发展。
  • UHPC应用基础理论研究
  • 赵人达, 赵成功, 原元, 李福海, 王永宝
    中国公路学报. 2021, 34(8): 1-22. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.001
    摘要 ( ) PDF全文 ( )   可视化   收藏
    钢纤维是超高性能混凝土(UHPC)的主要增强纤维,其在提升UHPC力学性能方面较其他纤维更好。为进一步促进钢纤维对UHPC性能的优化,加速UHPC在工程领域的推广和应用,从钢纤维的取向与分布、形状特征、掺量、改性及与其他纤维的混杂等方面出发,对UHPC中钢纤维研究的一些重要成果进行介绍和评述。结果表明:①关于钢纤维顺向及乱向分布下的力学模型、纤维取向的无损检测技术及其流变控制技术有待进一步研究;②关于钢纤维形状-加载速率对基体力学性能的耦合作用、UHPC中不同掺量骨料及其粒径与钢纤维长径比之间的匹配关系及一定纤维掺量和性能前提下,纤维长径比对该性能提升的临界点等方面还有待进一步研究;③关于纤维改性过程中的成本、改性程度控制阈值及其可能带来的副作用还有待于进一步探索;④发展有效、合理的数值方法来预测钢纤维UHPC的断裂行为等仍处于探索阶段,具有较高的研究价值;⑤钢纤维的研究主要注重于单一因素对不同性能的影响,建议按UHPC工程实际情况、性能需求、现场环境及成本划分权重,开展基于权重的纤维特性及掺量的研究;⑥关于钢-合成纤维混杂后其协同作用的定量描述、高强基体与柔性纤维的匹配问题以及基于多种不同尺度和不同性能耦合的混杂纤维组合的研究具有良好的研究价值。
  • 陈宝春, 杨简, 吴香国, 黄卿维
    中国公路学报. 2021, 34(8): 23-34. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.002
    摘要 ( ) PDF全文 ( )   可视化   收藏
    材料性能分级是结构设计方法建立的基础性工作。为探究超高性能混凝土(UHPC)合理的材料性能分级方法,以钢纤维掺量为主要参数,开展了3组试验,分别是抗压强度相同的UHPC单轴拉伸(直拉)强度测试、UHPC的抗拉性能(含初裂强度、抗拉强度与峰值拉应变)测试和UHPC劈裂、抗折和直拉强度的对比试验。试验结果表明:UHPC抗拉强度与抗压强度不存在简单的线性对应关系,UHPC性能分级不能仅采用抗压强度这一单一指标,而应同时考虑抗压与抗拉性能;随纤维掺量的增加,UHPC初裂强度、抗拉强度与峰值拉应变的增强幅度并不相同,UHPC抗拉性能分级时,不应只考虑抗拉强度,而应同时考虑3项性能指标;劈裂强度、抗折强度与直拉强度间不存在简单的线性换算关系,抗拉强度应直接采用直拉试验测试。在试验研究的基础上,提出考虑纤维增强作用的UHPC力学性能多指标分级方法。根据大量文献数据的统计分析结果和工程应用情况,建议了UHPC力学性能的具体分级和相应的指标值。
  • 刘路明, 方志, 刘福财, 肖敏
    中国公路学报. 2021, 34(8): 35-44. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.003
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为明确室内环境下普通及补偿收缩超高性能混凝土(UHPC)的收缩徐变特征,分别对这2种超高性能混凝土进行持续1 080 d的力学、收缩和徐变性能测试,分析了补偿收缩组分对超高性能混凝土性能的影响规律。基于收缩和徐变的试验结果,分析了国内外3种不同规范公式对室内环境下超高性能混凝土收缩徐变预测的适用性,并引入相应的修正系数对既有收缩徐变模型进行修正,使之适用于补偿收缩超高性能混凝土的收缩徐变预测。结果表明:①补偿收缩组分的加入对超高性能混凝土的力学性能有负面影响,使立方体抗压强度、棱柱体抗压强度和弹性模量分别降低4.3%、5.1%和4.2%。②UHPC棱柱体抗压强度和弹性模量与立方体抗压强度间存在良好的统计关系,且该统计关系受配合比和龄期的影响较小。③补偿收缩组分能有效抑制超高性能混凝土的收缩,使收缩降低28.9%,但对徐变有负面影响,使徐变应变、徐变系数和徐变度分别增加13.3%、9.3%和15.8%。④DBJ43/T325—2017的收缩、徐变模型对室内环境下普通超高性能混凝土的收缩徐变均给予较好的预测,预测误差分别在4%和6%以内;SIA 2052—2016仅有收缩模型的预测结果与实测结果较好地吻合;引入收缩和徐变修正系数后的修正模型能分别对补偿收缩超高性能混凝土的收缩和徐变予以较好地预测,预测误差也分别在4%和6%以内。
  • UHPC构件受力性能与设计方法
  • 刘欣益, 张清华, 程震宇, 贾东林, 卜一之
    中国公路学报. 2021, 34(8): 45-54. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.004
    摘要 ( ) PDF全文 ( )   可视化   收藏
    超高性能混凝土(Ultra-high-performance Concrete,UHPC)的受拉性能直接影响结构的抗裂性和耐久性,是结构设计中重要的力学指标之一。为研究UHPC构件在弯拉荷载作用下产生宏观裂缝前的受拉力学特性,以钢纤维与水泥基的协作受力特性为切入点,考虑钢纤维分布方向的随机性服从正态分布,建立了钢纤维受拉作用下的细观力学模型。该模型将钢纤维力作为由水泥基加载的被动力进行分析,在充分考虑水泥基材料特点的基础上,发展了UHPC构件受拉作用下宏观裂缝出现前弹性和拔出2个阶段的力学行为预测模型;开展了UHPC试件的纯弯曲试验,标定了材料受弯全过程中的关键力学指标,重点关注理论预测的弹性和拔出2个阶段的力学行为,并与预测模型计算结果进行对比;采用文献中钢纤维增强混凝土的试验结果进一步印证细观力学模型的适用性。理论分析及试验结果表明:建立的细观力学模型可准确描述出现宏观裂缝前受拉UHPC构件内部钢纤维的抗拉力学行为;预测模型计算的理论值与UHPC构件受拉作用下弹性和拔出2个阶段的力学指标试验结果吻合良好;常规钢纤维掺量的UHPC受拉性能由其内部钢纤维主导,理论计算时忽略受拉状态下水泥基对UHPC轴力的贡献不仅可以简化计算,而且可将其视为工程应用时的安全储备;建议的双折线拉伸本构中弹性与拔出2个阶段的极限应变分别为180×10-6,1 042×10-6
  • 谭昱, 吕梁胜, 王俊颜, 肖汝诚, 方明山
    中国公路学报. 2021, 34(8): 55-64. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.005
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为了在蒸汽环境中快速修复超高性能混凝土(UHPC)浇筑过程中产生的收缩裂纹和结构服役过程中产生的裂纹,加速UHPC结构刚度和抗渗性能的恢复,需要确定不同损伤程度的微裂纹在蒸汽环境中的快速愈合机制。因此,选取拉伸变形(应变为1 000×10-6,1 500×10-6,2 000×10-6)作为损伤指标,将损伤开裂后的UHPC试件分别放置在蒸汽环境中1,3,5 d,研究微裂纹在蒸汽环境中的快速愈合机制。通过直接拉伸试验、气体渗透试验和声发射分析不同拉伸变形的UHPC试件在蒸汽环境中的自愈合行为。拉伸试验结果表明:放置在蒸汽环境中,预裂试件的弹性模量的恢复程度随着拉伸变形的增大而减小,但依然大于预裂至相同拉伸应变的未愈合试件(放置在室内环境中)的弹性模量。刚度恢复程度随着放置在蒸汽环境时间的增长而增大,但愈合到一定程度后,延长放置时间对愈合的效果不明显。采用气体渗透试验表征了微裂纹的愈合程度,结果表明蒸汽环境中的微裂纹能快速愈合,但随着拉伸变形的增加,自愈合的程度减小,表明拉伸变形越大,微裂纹越多,自愈合产物填充所需时间越长。声发射分析表明:UHPC内部发生损伤时才会产生声发射源,在重新加载阶段,对于已经愈合的微裂纹,在微裂纹的2个界面之间新形成的晶体会再次开裂,此时会检测到声发射源。然而,对于未愈合的微裂纹重新张开时,则不会产生声发射源,直至旧裂纹发展和新裂纹的产生才会产生声发射源。
  • 胡锐, 方志, 许宝丹
    中国公路学报. 2021, 34(8): 65-77. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.006
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为明确超高性能混凝土(Ultra-high Performance Concrete,UHPC)柱中配箍率和钢纤维掺量对抗震性能的影响,对不同配箍率(0%、0.25%和0.5%)与钢纤维体积掺量(0%、1%和2%)的5根超高性能混凝土足尺柱试件进行了抗震性能试验研究,分析了配箍率和钢纤维掺量对超高性能混凝土柱耗能能力、自复位能力、强度退化性能、刚度退化性能以及弯矩曲率关系的影响规律。基于对超高性能混凝土柱构件性能、箍筋应变以及等效侧向约束力的分析,提出钢纤维体积掺量与配箍率的等效计算公式。研究结果表明:①配箍率对正截面破坏超高性能混凝土柱的延性、耗能能力以及自复位能力均有影响,当配箍率从0%提高到0.5%时,柱试件的延性系数提高15%,耗能能力提高55%,自复位能力提高32%;②钢纤维体积掺量对超高性能混凝土柱破坏形态的影响显著,随着钢纤维体积掺量的增加,混凝土的压碎剥落现象得到明显改善,延缓了受压钢筋屈曲现象的发生,从而提高了柱的延性,当钢纤维体积掺量从0%提高到2%时,柱试件的延性系数提高45%,耗能能力提高142%,自复位能力提高42%;③对于正截面破坏的受压构件而言,采用钢纤维代替箍筋具有一定的可行性。对于所研究的超高性能混凝土柱而言,2%的钢纤维体积掺量可等效于0.51%的配箍率。
  • 冯峥, 李传习, 潘仁胜, 周佳乐, 柯璐, 柯红军
    中国公路学报. 2021, 34(8): 78-90. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.007
    摘要 ( ) PDF全文 ( )   可视化   收藏
    针对超高性能混凝土(UHPC)直剪性能研究较为缺乏的现状,开展24个“Z”形UHPC整体浇筑试件和24个“Z”形UHPC平接缝试件(用高压水凿毛先浇界面)的直剪试验,以得到钢纤维特性以及浇筑方式对UHPC (直剪)初裂强度、峰值强度、破坏模式以及直剪承载力的影响;并基于试验结果及UHPC细观本构模型开展了UHPC直剪承载力的理论分析研究。结果表明:无纤维UHPC整体试件和钢纤维掺量未超过3.0%的平接缝试件直剪破坏模式均为脆性破坏,纤维掺量达到2.5%的整体试件具备剪切延性破坏的特征;纤维掺量达到2.5%的平接缝试件界面处新老UHPC结合紧密;整体界面和平接缝界面直剪的初裂强度与峰值强度均随纤维掺量增加而显著增加,且峰值强度随纤维掺量几乎呈线性变化;纤维形状与长径比对整体界面初裂强度和峰值强度的影响不大,对平接缝界面则长纤维优于短纤维,异形纤维优于平直形纤维;整体界面和平接缝界面直剪的峰裂比(峰值强度与初裂强度之比)为103.5%~166.7%,整体界面峰裂比均显著大于纤维掺量相同的平接缝界面,2种界面的峰裂比均随钢纤维掺量增加而增加。建立了平接缝界面与整体界面直剪峰值强度之比η(简称直剪强度比)与纤维特征参数λf之间的高精度拟合公式。此外,还分别提出了高精度的UHPC整体界面和平接缝界面的直剪承载力计算公式。
  • 方志, 陈佳醒, 曹清
    中国公路学报. 2021, 34(8): 91-105. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.008
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为明确超高性能混凝土(Ultra-high Performance Concrete,UHPC)双向板在局部荷载作用下的抗冲切性能,以UHPC强度、板厚、配筋率、局部加载面积和加载位置为试验参数,对9块四边简支UHPC双向板进行抗冲切破坏试验,分析UHPC双向板的冲切破坏机理和各试验参数对板抗冲切性能的影响规律。结果表明:试件均发生钢筋屈服后的冲切破坏,板底出现环形裂缝且板内形成冲切锥体;冲跨比小于7时,冲切破坏面倾角和名义抗冲切强度均随冲跨比增加而减小,而冲跨比大于7时,则其基本不变;UHPC强度等级从120 MPa提高到150 MPa时,板的抗冲切承载能力提高5.5%;当板厚由60 mm增加至80 mm和100 mm时,板的抗冲切承载能力分别提高69.7%和1.883倍;相较于1.31%配筋率的试件,2.57%配筋率的试件的抗冲切承载能力提高14.9%;与方形加载板边长为70 mm的试件相比,边长为90 mm试件的抗冲切承载能力提高9.8%;与中部加载试件相比,边部和角部加载试件的抗冲切承载能力分别提高15.3%和13.1%。为避免UHPC双向板发生钢筋网格内的冲切失效,板底受拉钢筋间距不应大于加载板边长与1.15倍有效板厚的和。基于试验结果和相关文献,评估了现有抗冲切承载力计算公式的适用性,并引入冲跨比考虑局部荷载偏置的影响,提出了适用范围更宽的UHPC板抗冲切承载能力计算公式。
  • 邱明红, 邵旭东, 胡伟业, 赵旭东, 汪智坤
    中国公路学报. 2021, 34(8): 106-117. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.009
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为建立钢筋UHPC矩形截面受弯构件的钢筋应力简化计算方法,首先基于UHPC结构计算的基本假定建立了钢筋应力数值计算方法,然后推导并修正了考虑UHPC抗拉贡献的钢筋应力简化公式,最后通过与国内外文献相关试验结果进行对比,对所提出的钢筋应力简化公式的适用性进行了验证。结果表明:①数值计算方法所得钢筋应力预测值与实测值整体吻合良好,证明了该方法的有效性。②由于忽略了UHPC的抗拉贡献,直接采用GB 50010—2010规范和JTG 3362—2018规范推荐钢筋应力公式计算所得UHPC构件的钢筋应力误差较大。③根据UHPC结构计算基本假定推导出UHPC受弯构件开裂截面钢筋应力简化公式,并结合参数分析结果建议简化公式中系数α取值0.85,β取值0.50;钢筋应力在125~400 MPa范围时,简化公式预测效果较好;但当钢筋应力在40~125 MPa范围时,由于过高估计UHPC的抗拉贡献,简化公式预测结果明显偏小,甚至出现负值。④为避免简化公式过高估计UHPC抗拉贡献,改进了UHPC受拉贡献系数β的取值方法,进而得到了钢筋应力修正公式;修正后钢筋应力计算值在裂缝发展阶段内,与实测值、数值分析值均整体吻合良好,且与其他文献的钢筋应力试验值吻合也较好,表明修正公式的适用性也较好,可为UHPC结构设计规范的编制提供参考。
  • 李传习, 周佳乐, 柯璐, 方昌乐, 施宇, 潘仁胜
    中国公路学报. 2021, 34(8): 118-131. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.010
    摘要 ( ) PDF全文 ( )   可视化   收藏
    针对配筋超高性能混凝土(UHPC)构件的抗扭性能研究严重不足的状况,进行10个不同配筋率UHPC矩形梁的纯扭试验。研究参数主要包括钢纤维掺量、纵筋配筋率和箍筋配筋率。观察或测试试件的扭转破坏过程及形态,获得裂缝开展及分布情况、失效模式、扭矩-扭率曲线、扭矩-UHPC应变曲线、扭矩-钢筋应变曲线、开裂扭矩及极限扭矩等数据,分析不同参数对其扭转性能的影响规律及其主要机理。研究结果表明:扭矩不大于无筋UHPC试件极限扭矩时,配筋构件抗扭刚度小于无筋构件;配筋及无筋试件的纯扭破坏均表现为多条主裂缝贯通,且裂缝呈空间螺旋状分布;无配筋试件形成少量斜裂缝,极限扭率较小,破坏过程迅速;配筋试件形成细且密的斜裂缝、极限扭率较大、延性更好;根据实测的极限扭矩扭率增幅情况,以及纵、箍筋屈服情况,受扭的UHPC配筋试件可分为少筋Ⅰ类构件(含无筋构件)、少筋Ⅱ类构件、适筋构件、部分超筋构件、超筋构件;钢纤维改善了UHPC抗拉特征,使得主裂缝开裂角度(裂缝与试件轴线的夹角)增加;钢纤维掺量由2.5%增加到3.5%,试件开裂扭矩和极限扭矩分别提高了23.2%和20.9%。在试验的基础上,根据扭转试件即将开裂时实测的拉压应力状态以及二维应力状态下的强度准则,得到UHPC构件开裂扭矩系数值;最后,根据试验结果得到了UHPC极限扭矩计算公式的截面抗扭系数。
  • UHPC-NC/RC组合结构研究
  • 杨俊, 周建庭, 张中亚, 王宗山, 邹杨, 王劼耘
    中国公路学报. 2021, 34(8): 132-144. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.011
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为明晰超高性能混凝土(UHPC)加固RC结构的界面剪切力学行为,批量开展键槽定量化处理UHPC-NC界面抗剪承载性能试验研究。设计制作8组包含不同深度(t)、宽度(w)和间距(d)的UHPC-NC组合构件,分析了界面剪切荷载-滑移曲线特征,剪切应变分布规律、破坏形态以及极限抗剪承载力。试验结果表明,键槽处理方式能显著增强UHPC-NC界面初始剪切刚度(刚度值高于250 kN·mm-1)并有效提高界面极限抗剪强度(1.46~3.98 MPa,其中大于3 MPa的试件占总数的57.1%)。不同键槽参数tdw对UHPC-NC界面抗剪强度的影响权值逐渐递减,且正角度开槽对界面抗剪强度的提升幅度为13%~32%,普遍优于负角度组;当深度t较小且w/t≤2时,后浇UHPC键槽部分承受较大剪切荷载,此时UHPC-NC界面出现“混合剪”破坏模式,能够有效发挥UHPC的抗弯拉性能;相同条件下,当w/t≥4时,后浇UHPC键槽面积在界面处占比增大,致使裂缝移至NC侧发展,即由NC主要承担界面剪力。此外,增大键槽间距d可改善界面域的剪力分配,“密集开槽”方式虽能有效提高界面抗剪能力,但考虑到此方式对原结构的损伤较大且施工成本较高,应对开槽深度和间距进行合理优化。提出基于断裂面法的UHPC-NC界面抗剪承载力计算公式,计算误差均在17%以内,计算结果表明,提出的公式可较好地评价定量化键槽处理的UHPC-NC界面抗剪性能。
  • 张锐, 胡棚, 李晰, 魏定邦, 代前兵
    中国公路学报. 2021, 34(8): 145-156. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.012
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为了研究UHPC永久模板RC无腹筋组合梁的抗剪性能,以UHPC永久模板的厚度和界面条件为试验参数,分别开展了UHPC材料力学性能与UHPC永久模板RC无腹筋组合梁四点加载试验。由于组合梁的抗剪性能与UHPC的基本力学性能密切相关,因此首先对UHPC的抗拉与抗压性能进行了试验研究。UHPC的力学性能试验结果表明,UHPC在单轴单调荷载作用下具有一定程度的应变硬化特征,其拉伸极限强度为4.87 MPa,极限拉应变为0.6%。在材料试验结果的基础上,通过考虑UHPC永久模板厚度与界面方式这2种试验参数,分别设计了1根RC参照梁,1根UHPC参照梁,以及2种UHPC/RC界面类型(光滑与均布剪力键)、3种永久模板厚度(15,20,25 mm)、共计6根U形UHPC永久模板RC无腹筋组合梁。在对这8根梁分别进行四点加载破坏试验的基础上,分析了UHPC永久模板不同厚度与界面类型对组合梁抗剪承载力的影响。结果表明:组合梁的抗剪承载力及其变形能力较相同尺寸及配筋的RC无腹筋梁至少提高了103.7%和117.7%;且无论何种界面类型下,抗剪承载力随着UHPC永久模板厚度的增加而增加;界面为均布剪力键的UHPC永久模板较光滑界面能提供更高的抗剪承载力与变形能力。最终,基于修正桁架模型理论,分析了UHPC永久模板与RC无腹筋梁的抗剪承载力及其抗剪构成,提出了UHPC永久模板RC无腹筋组合梁的抗剪承载力计算公式,且公式计算值与试验值吻合较好。
  • 李嘉维, 夏樟华, 孙明松, 夏坚
    中国公路学报. 2021, 34(8): 157-167. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.013
    摘要 ( ) PDF全文 ( )   可视化   收藏
    由于整体预制RC盖梁对起重和运输设备要求高,而分段预制盖梁的拼接缝容易发生渗水且在节段分界面上纵筋不能连续传力,因此提出一种在UHPC模壳内部现浇混凝土的半预制叠合盖梁。开展带剪力键和不带剪力键的2个UHPC模壳-RC叠合盖梁和1个现浇RC盖梁对比试件的静力试验,并通过有限元模型分析了结合面黏结程度对叠合盖梁受力性能和破坏模式的影响规律。研究结果表明:UHPC模壳-RC叠合盖梁的破坏模式与现浇RC盖梁一致,均为剪压破坏;不带剪力键的叠合盖梁开裂荷载和极限承载力分别比现浇RC盖梁提高了42.1%和13.8%,同时可以有效降低裂缝宽度的扩展,但叠合盖梁存在界面脱开,核心混凝土拱起和UHPC模壳竖向开裂等现象;剪力键可以增大交界面黏结程度,有效减小最大裂缝宽度和交界面裂缝宽度的扩展速度,其交界面开裂荷载和极限承载力比不带剪力键的叠合盖梁提高50.0%和12.1%;理想界面黏结状态下,UHPC模壳可以达到极限压应变,材料性能得到充分发挥,说明UHPC模壳可以完全参与整体受力,但极限承载力仅比带剪力键叠合盖梁提高8.8%。以上结果说明,带剪力键的UHPC模壳-RC叠合盖梁具有良好的截面黏结强度和整体受力性能,可以推荐实际工程使用。
  • 李帅, 张凡, 储长青, 赵泰儀, 王景全, 高立强, 姚一鸣, 明发焱
    中国公路学报. 2021, 34(8): 168-180. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.014
    摘要 ( ) PDF全文 ( )   可视化   收藏
    采用预制超高性能混凝土(Ultra-high Performance Concrete,UHPC)永久模壳增强普通混凝土(Reinforced Concrete,RC)桥墩,可提高其抗震能力和耐久性能,同时加快桥梁施工速度。为研究预制UHPC永久模壳对桥墩抗震性能的影响,提出了预制模壳的设计方法,分析了其对桥墩的主动增强及被动约束机理;通过参数敏感性分析,研究了UHPC永久模壳关键参数对桥墩抗震性能的影响,包括UHPC抗压和抗拉强度等材料性能参数及模壳高度和厚度等几何参数。研究结果表明:永久模壳设计厚度由UHPC抗拉强度及桥墩截面尺寸控制,核心区混凝土浇筑温度及速度对其有一定影响,浇筑温度与模壳设计厚度呈逆相关,当浇筑温度从0℃上升到30℃时,模壳厚度约减小43%,而浇筑速度与模壳厚度呈正相关,当浇筑速度从0.5 m·h-1增加到4 m·h-1时,模壳厚度约增加30%;预制模壳的主动增强和被动约束作用可提高RC桥墩最大承载力和耗能能力15%以上,残余变形可减小17%以上;UHPC抗压和抗拉强度对新型桥墩初始刚度、最大承载力、耗能能力等性能指标影响较小,变化量均低于6%,提高UHPC抗压强度可有效降低新型桥墩的残余变形;预制UHPC模壳厚度和高度等几何参数主要影响新型桥墩的初始刚度和残余变形,对其耗能能力和最大承载力无显著影响;研究成果可为预制UHPC永久模壳增强混凝土桥墩的设计及抗震分析提供参考依据。
  • 柳献, 张姣龙, 蒋子捷, 刘震, 徐品, 李飞
    中国公路学报. 2021, 34(8): 181-190. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.015
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为了研究超高性能混凝土(UHPC)加固盾构隧道衬砌结构性能,首先开展了UHPC材料抗压、抗拉试验研究,然后将其应用于加固盾构隧道衬砌结构,并开展了加固结构的极限承载力足尺试验研究。该加固方法包括以下步骤:在隧道管片内表面进行凿毛处理,在凿毛后的内弧面植入弯筋和化学锚栓,清理凿毛表面,最后在内弧面浇筑0.06 m厚UHPC。未加固衬砌结构整环外径6.2 m,环宽0.6 m,管片厚度0.35 m。加固结构通过外弧面上均匀分布的24个千斤顶进行加载,这些千斤顶分为3组,分别控制其荷载大小,以模拟地层的不均匀压力。标准养护条件下,UHPC18 d龄期(足尺试验龄期)的抗压和抗拉弹性极限强度分别达到138 MPa和12 MPa。加固整环结构的弹性极限由腰部外弧面的混凝土开裂控制,结构破坏是由于原管片接头位置出现4个塑性铰,致使结构变成可变机构。通过分析试验结果以及对比现有加固技术,得到如下主要结论:①UHPC材料的拉压力学性能对养护湿度的依赖性较小,材料存在明显的应变强化现象;②UHPC加固隧道衬砌结构极限承载力由管片接头部位性能控制;③UHPC自身的材料性能得到充分利用,但原隧道管片的材料性能尚未得到充分发挥;④相比未加固结构,初始结构刚度提高1个数量级,结构弹性极限提高了115%,UHPC加固结构承载力和传统的钢板加固相当。
  • 钢-UHPC组合结构研究
  • 李萌, 邵旭东, 曹君辉, 何广, 陈玉宝, 赵旭东
    中国公路学报. 2021, 34(8): 191-204. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.016
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为深入研究超高性能混凝土(Ultra-high Performance Concrete,UHPC)中短栓钉的抗剪性能,提出精细化的计算理论和方法,指导工程设计,共完成9个静力推出试验。试件参数包括短栓钉直径、界面处理情况以及加载方式。根据试验受力模式,提出了一种三维精细有限元分析模型,利用ABAQUS显式分析方法,探讨焊缝形式、短栓钉直径、短栓钉高度、UHPC强度等参数对UHPC中短栓钉抗剪性能的影响。最后结合试验数据及有限元分析结果提出UHPC中短栓钉荷载-滑移全曲线实用经验公式和抗剪承载力计算公式。试验及分析结果表明:短栓钉抗剪承载力主要受短栓钉直径和焊缝形式的影响,随短栓钉直径的增大而提高,有限元中模拟焊缝相比于不模拟焊缝时短栓钉抗剪承载力提高48%~93%;短栓钉抗剪刚度主要受短栓钉直径和界面处理情况的影响,界面黏结将提高抗剪刚度;加载方式(单调加载和循环加载)、短栓钉高度和UHPC强度对短栓钉抗剪性能影响较小;2种不同直径短栓钉最大滑移均不超过4 mm,设计时可按照弹性连接件设计方法计算;收集的国内外68组有效试验数据与理论计算结果吻合度较高;建议取0.3Pu~0.4Pu(短栓钉抗剪承载力)处的割线刚度平均值作为UHPC中短栓钉抗剪刚度,抗剪刚度试验值与理论计算结果对比表明该方法具有较高的精度。
  • 程震宇, 张清华, 邓鹏昊, 魏川, 李明哲, 段跃超
    中国公路学报. 2021, 34(8): 205-217. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.017
    摘要 ( ) PDF全文 ( )   可视化   收藏
    改进螺旋线(Modified Clothoide,MCL)形组合销是抗剪性能优异的一类新型剪力连接件,在组合结构桥梁中具有广阔的应用前景。为探究MCL形组合销在超高性能混凝土(Ultra-high Performance Concrete,UHPC)中的抗剪性能,依据新型波形组合桥面板结构中MCL形组合销的纵向和横向受力特征,设计并开展了纵向和横向2类推出试验;建立了考虑材料与界面接触等非线性因素的2类推出试验有限元模型,基于试验结果验证了有限元模型的适用性;采用有限元模型开展了结构的全过程受力分析,阐明了2类推出试验的荷载传递历程与破坏机理;依据受力特征和破坏模式,推导了适用于钢销失效破坏模式的MCL形组合销纵向极限抗剪承载力计算式;通过现有公式对比,确定了适用于UHPC压溃破坏模式的MCL形组合销横向极限抗剪承载力计算式。结果表明:UHPC中MCL形组合销的纵向和横向抗剪性能差异显著,纵向抗剪性能表现出良好的延性特性,而横向抗剪性能表现出较高的抗剪刚度和抗剪承载力;主要力学指标的有限元计算值与试验结果符合较好,验证了有限元模型的适用性;MCL形组合销的纵向破坏模式主要表现为钢销产生较大的塑性变形,其根部截面进入屈服状态,而横向破坏模式主要表现为钢销下侧UHPC压溃;纵向和横向极限抗剪承载力计算值与试验值之比的均值分别为1.18,1.06,标准差分别为0.13,0.01,计算值与试验值吻合良好。
  • 王皓磊, 孙韬, 刘晓阳, 唐宸, 王解军, 陈爱军
    中国公路学报. 2021, 34(8): 218-233. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.018
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为研究钢-超高性能混凝土(Ultra-high Performance Concrete,UHPC)连续组合梁的抗弯承载能力,完成了2根大比例缩尺模型的静载试验,包括1根钢-UHPC连续组合梁和1根预应力钢-普通混凝土(Normal Strength Concrete,NC)连续组合梁,对其挠度、应力分布、裂缝发生发展模式及承载能力进行分析,并研究了钢-UHPC连续组合梁的弯矩重分布性能。同时,采用ABAQUS软件中的塑性损伤模型(CDP)进行数值模拟。结果表明:钢-UHPC连续组合梁UHPC板的名义开裂强度为普通组合梁预应力NC板的2.2倍,钢-UHPC连续组合梁的极限承载力约为普通组合梁的1.2倍;UHPC板开裂后裂缝密集、间距小,且以长度较小的微裂纹为主;UHPC板/NC板与钢梁均采用群钉连接,二者相对滑移较小,可有效形成整体共同工作;采用塑性理论计算钢-UHPC连续组合梁的抗弯承载能力,应考虑UHPC的抗拉强度,与现有组合结构规范公式相比,根据所提出方法计算得到的负弯矩区截面抗弯承载力与试验值吻合较好;考虑UHPC抗拉强度后,钢-UHPC连续组合梁负弯矩区塑性铰转动能力降低,弯矩调幅需求及有效弯矩重分布能力均明显下降。
  • 朱劲松, 王修策, 丁婧楠
    中国公路学报. 2021, 34(8): 234-245. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.019
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为研究钢-UHPC华夫板组合梁负弯矩区抗弯性能,考虑华夫板板肋高度比、纵筋配筋率以及采用抗拔不抗剪栓钉连接件对钢-UHPC华夫板组合梁的破坏模式、裂缝发展规律及承载能力的影响,采用跨中单点加载方式完成了4根钢-UHPC华夫板组合梁试件在负弯矩作用下的静力加载试验。基于简化塑性理论,并考虑将UHPC受拉区的拉应力分布等效为均匀应力分布,提出了负弯矩区钢-UHPC华夫板组合梁的极限抗弯承载力计算方法。研究结果表明:负弯矩作用下,4根钢-UHPC华夫板组合梁试件的破坏形态均为典型的弯曲破坏;极限状态下,华夫板内纵向受拉钢筋屈服,钢梁上翼缘受拉屈服,钢梁下翼缘受压发生局部屈曲,华夫板跨中主裂缝贯通,其余裂缝呈现密集分布且纤细的特点。保证华夫板总高度90 mm不变,板肋高度比由1∶1减小为1∶2会加剧华夫板的裂缝开展,使试件的开裂荷载和初始刚度略有降低,但承载能力基本不变。华夫板配筋率增大1.05%,试件的承载力与刚度分别提高18.4%与7.7%,并且有助于约束华夫板的裂缝宽度。采用抗拔不抗剪栓钉连接件可在一定程度上抑制试件在正常使用阶段时的裂缝开展,但会导致试件承载力、刚度和延性下降,下降幅度分别为6.9%、9.6%和19.7%。根据所提出的钢-UHPC华夫板组合梁负弯矩区极限抗弯承载力的理论计算公式所得的计算值略低于试验值,且相对误差在10%以内。
  • 邵旭东, 胡伟业, 邱明红, 王衍, 赵旭东
    中国公路学报. 2021, 34(8): 246-260. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.020
    摘要 ( ) PDF全文 ( )   可视化   收藏
    为提高钢-混组合梁桥负弯矩区混凝土桥面板的抗裂性并简化现场施工工艺,提出新型钢-混组合梁桥负弯矩区超高性能混凝土(Ultra-high Performance Concrete,UHPC)接缝方案。以湖南省某桥为工程背景,进行1∶2缩尺模型抗弯试验研究;编制截面弯矩-曲率关系MATLAB程序,并与实测值进行对比,验证该程序可用于计算UHPC覆盖下的普通混凝土(NC)中钢筋应力;对现有NC裂缝宽度规范公式进行修正,提出考虑UHPC约束作用的组合梁负弯矩区NC最大裂缝宽度的建议公式;讨论钢-混组合梁桥负弯矩区UHPC湿接缝合理的纵桥向长度,分析UHPC层厚度及层内配筋对抗裂性能的影响。研究结果表明:新型UHPC接缝方案的抗裂性能和抗弯承载能力均满足工程要求,且接缝节点强度高于非接缝区预制部分强度;负弯矩作用下,试件沿梁高的应变较好地满足平截面假定,钢梁与混凝土板及UHPC与NC间的层间滑移量均较小;UHPC裂缝呈现“多而细”的特征,而NC裂缝呈现“少而宽”的特征,预制部分混凝土顶面最先开裂,之后UHPC-NC交界面、UHPC顶面、UHPC覆盖下的NC侧面依次出现裂缝;对于负弯矩区采用UHPC接缝的中小跨径钢-混组合连续梁桥,UHPC层的纵桥向长度宜为20%标准跨径,UHPC层厚度可根据实际工程设计要求确定,增大桥面板内钢筋直径可以提高负弯矩区混凝土的抗裂性能。
  • 王洋, 邵旭东, 沈秀将, 曹君辉
    中国公路学报. 2021, 34(8): 261-272. https://doi.org/10.19721/j.cnki.1001-7372.2021.08.021
    摘要 ( ) PDF全文 ( )   可视化   收藏
    应用UHPC加固正交异性钢桥面时,由于钢面板存在贯穿型裂缝导致UHPC底面抗裂无法满足要求,提出一种新型钢板条-UHPC组合桥面结构。对12个正弯矩作用下钢板条-UHPC组合桥面构件进行静力参数试验,讨论构件的破坏模式及裂缝的发展与分布;对4个构件进行抗弯疲劳试验,研究构件在不同荷载幅作用下的刚度衰减、裂缝扩展、剩余强度,并提出适用于该类构件的S-N曲线。研究结果表明:带钢板条构件裂缝宽度达到0.05 mm时,具备超过20.1~28.0 MPa的名义开裂强度,相比无钢板条构件的7.2~9.7 MPa,对UHPC的抗裂性能强化作用明显;提高钢板条宽度对于UHPC的开裂抑制作用明显,可有效降低平均裂缝间距而延缓裂缝宽度的持续扩展;提高钢板条宽度与UHPC层厚均可大幅提高组合桥面构件的刚度,使得构件在弹性极限后进入更高的强化阶段;钢板条-钢面板连接方式对于构件的破坏模式和裂缝发展无影响;荷载比S≤0.43时,构件在1 000万次疲劳作用后,刚度未现折减,裂缝宽度仅0.03 mm,可认为当S<0.43时,构件具备无限疲劳寿命;S≥0.76时,构件早期存在极高的损伤积累,当刚度开始衰减后,短期内即会达到疲劳寿命极限;对于S为0.43~0.76的构件,UHPC裂缝扩展缓慢,开裂后在短期内不会出现明显刚度衰减,剩余疲劳寿命较高;直接采用目前的疲劳寿命评估方法对4个构件的进行评估,结果差别较大;结合试验结果,提出了针对钢板条-UHPC组合构件的S-N曲线,可为类似结构的疲劳寿命评估提供参考。