UHPC-NC组合短柱轴压性能

梅葵花, 徐升宇, 郭乐, 周琪, 孙胜江

中国公路学报 ›› 2025, Vol. 38 ›› Issue (3) : 354-366.

PDF全文下载(6252 KB)
PDF全文下载(6252 KB)
中国公路学报 ›› 2025, Vol. 38 ›› Issue (3) : 354-366. DOI: 10.19721/j.cnki.1001-7372.2025.03.026
桥梁工程

UHPC-NC组合短柱轴压性能

  • 梅葵花1, 徐升宇1, 郭乐1,2, 周琪1, 孙胜江1
作者信息 +

Axial Compression Performance of UHPC-NC Composite Short Columns

  • MEI Kui-hua1, XU Sheng-yu1, GUO Le1,2, ZHOU Qi1, SUN Sheng-jiang1
Author information +
文章历史 +

摘要

为有效提高桥梁墩柱结构的耐久性,通过使用超高性能混凝土(Ultra-high Performance Concrete,UHPC)约束普通混凝土(Normal Concrete,NC)形成一种新型的组合结构——UHPC-NC组合柱。对8根UHPC-NC组合柱、1根无箍筋保护层组合柱、1根无钢筋组合柱开展轴压试验,探究不同浇筑方式、UHPC厚度、箍筋间距以及有无钢筋对组合柱轴压性能的影响。结果表明:UHPC-NC组合柱达到峰值荷载时箍筋外侧UHPC仍保持一定的完整性,并未发生大面积剥落;浇筑方式对组合柱承载力影响较大,先浇筑内部NC后浇筑外部UHPC的方法能够使组合柱获得更大的承载能力;对于相同截面积的组合柱试件,其峰值荷载增加的相对幅值随UHPC厚度的增加而逐渐减小,当UHPC厚度分别由30 mm增加到40 mm,由40 mm增加到50 mm时,峰值荷载增加的相对幅值分别为11.8%和9.5%;箍筋间距对组合柱初期刚度几乎无影响,但组合柱峰值荷载随箍筋间距的减小而增大,当箍筋间距由60 mm减小到40 mm时,组合柱的峰值荷载提升了11.0%;为避免UHPC-NC组合柱发生脆性破坏,应在组合柱中配置螺旋箍筋。建立了与试验结果较为吻合的UHPC-NC组合柱有限元分析模型;基于轴压试验与数值模拟,引入了箍筋外侧UHPC强度折减系数α和浇筑方式影响系数β,提出的组合柱轴压承载力计算公式具有较高的精度,可用于UHPC-NC组合柱的轴压承载力计算。

Abstract

To effectively improve the durability of bridge pier column structures, a new type of composite structure, ultra-high-performance concrete (UHPC) normal concrete (NC) composite columns, was developed in this study. Axial compression tests were conducted on eight UHPC-NC composite columns, one composite column without a stirrup protection layer, and one composite column without a steel bar. The effects of different casting methods, UHPC thicknesses, stirrup spacings, and steel bar arrangements on the axial compression performance of composite columns were investigated in this study. The results show that the UHPC outside the stirrup maintains a certain integrity, and no large-scale spalling occurs when UHPC-NC composite columns reach the peak load. The casting method significantly affects the bearing capacity of the composite columns. Casting the internal NC first and then casting the exterior UHPC can make the specimen increase its bearing capacity. For composite column specimens with the same cross-sectional area, the relative amplitude of the peak load increase gradually decreased with an increase in the UHPC thickness. When the UHPC thickness was increased from 30 to 40 mm and from 40 to 50 mm, the relative amplitudes of the peak load increase were 11.8% and 9.5%, respectively. The stirrup spacing had little effect on the initial stiffness of the composite column. However, the bearing capacity of the composite column increased with decreasing stirrup spacing. When the stirrup spacing was reduced from 60 to 40 mm, the ultimate bearing capacity of the specimen increased by 11.0%. Spiral stirrups were arranged in the composite columns to avoid brittle failure of the UHPC-NC composite columns. A finite-element analysis model of the UHPC-NC composite column was established in this study. It produces results in good agreement with the experimental results. The strength reduction coefficient of UHPC outside the stirrup, α, and the influence coefficient of the casting method, β, were introduced based on the axial compression tests and numerical simulation. The calculation formula for the axial compression bearing capacity of composite columns is highly accurate and can be used to calculate the axial compression bearing capacity of UHPC-NC composite columns.

关键词

桥梁工程 / 超高性能混凝土 / 试验研究 / 轴压性能 / 组合结构 / 约束效应 / 承载力

Key words

bridge engineering / ultra-high performance concrete / experimental investigation / compression performance / composite structure / confinement effect / bearing capacity

引用本文

导出引用
梅葵花, 徐升宇, 郭乐, 周琪, 孙胜江. UHPC-NC组合短柱轴压性能[J]. 中国公路学报, 2025, 38(3): 354-366 https://doi.org/10.19721/j.cnki.1001-7372.2025.03.026
MEI Kui-hua, XU Sheng-yu, GUO Le, ZHOU Qi, SUN Sheng-jiang. Axial Compression Performance of UHPC-NC Composite Short Columns[J]. China Journal of Highway and Transport, 2025, 38(3): 354-366 https://doi.org/10.19721/j.cnki.1001-7372.2025.03.026
中图分类号: U444   

参考文献

[1] 刘 钊.混凝土桥梁溯源与发展思考[J].桥梁建设,2013,43(5):5-11. LIU Zhao. Historical review and development concern of concrete bridges [J]. Bridge Construction, 2013, 43 (5): 5-11.
[2] 邵旭东,樊 伟,黄政宇.超高性能混凝土在结构中的应用[J].土木工程学报,2021,54(1):1-13. SHAO Xu-dong, FAN Wei, HUANG Zheng-yu. Application of Ultra-high-performance Concrete in engineering structures [J]. China Civil Engineering Journal, 2021, 54 (1): 1-13.
[3] 崔 冰,王景全,刘加平.UHPC桥梁研究进展与规模化应用技术路径分析[J].中国公路学报,2023,36(9):1-19. CUI Bing, WANG Jing-quan, LIU Jia-ping. State-of-the-art of UHPC bridges: The paths towards industrial application [J]. China Journal of Highway and Transport, 2023, 36 (9): 1-19.
[4] LEE M G, WANG Y C, CHIU C T. A preliminary study of reactive powder concrete as a new repair material [J]. Construction and Building Materials, 2007, 21 (1): 182-189.
[5] LI J Q, WU Z M, SHI C J, et al. Durability of ultra-high performance concrete — A review [J]. Construction and Building Materials, 2020, 255: 119296.
[6] XI B, AL-OBAIDI S, FERRARA L. Effect of different environments on the self-healing performance of Ultra High-performance Concrete — A systematic literature review [J]. Construction and Building Materials, 2023, 374: 130946.
[7] YANG J, CHEN B C, SU J Z, et al. Effects of fibers on the mechanical properties of UHPC: A review [J]. Journal of Traffic and Transportation Engineering: English Edition, 2022, 9 (3): 363-387.
[8] 史才军,何 稳,吴泽媚,等.纤维对UHPC力学性能的影响研究进展[J].硅酸盐通报,2015,34(8):2227-2236,2247. SHI Cai-jun, HE Wen, WU Ze-mei, et al. Influence of fibers on mechanical properties of UHPC [J]. Bulletin of the Chinese Ceramic Society, 2015, 34 (8): 2227-2236, 2247.
[9] 杨 俊,周建庭,丁 鹏,等.低配筋UHPC中空短柱轴心受压力学性能[J].中国公路学报,2019,32(3):81-92. YANG Jun, ZHOU Jian-ting, DING Peng, et al. Mechanical performance of low-reinforced UHPC hollow short columns under axial compression load [J]. China Journal of Highway and Transport, 2019, 32 (3): 81-92.
[10] WEI J G, XIE Z T, ZHANG W, et al. Experimental study on circular steel tube-confined reinforced UHPC columns under axial loading [J]. Engineering Structures, 2021, 230: 111599.
[11] WANG J J, ZHANG S S, NIE X F, et al. Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC) [J]. Composite Structures, 2023, 312: 116879.
[12] ZHANG R Z, LIU J P, WANG W Y, et al. Fire behaviour of thin-walled steel tube confined reinforced concrete stub columns under axial compression [J]. Journal of Constructional Steel Research, 2020, 172: 106180.
[13] YU B L, KODUR V. Effect of temperature on strength and stiffness properties of near-surface mounted FRP reinforcement [J]. Composites Part B: Engineering, 2014, 58: 510-517.
[14] TONG T, YUAN S Q, LIU Z, et al. Experiments and stress-strain model of concrete confined by UHPC materials [J]. Journal of Materials in Civil Engineering, 2023, 35 (4): 04023006.
[15] RONANKI V S, AALETI S. Experimental and analytical investigation of UHPC confined concrete behavior [J]. Construction and Building Materials, 2022, 325: 126710.
[16] ALSOMIRI M, JIANG X F, LIU Z. Elastic restraint effect of concrete circular columns with ultrahigh-performance concrete jackets: An analytical and experimental study [J]. Materials, 2021, 14 (12): 3278.
[17] TIAN H W, ZHOU Z, ZHANG Y, et al. Axial behavior of reinforced concrete column with ultra-high performance concrete stay-in-place formwork [J]. Engineering Structures, 2020, 210: 110403.
[18] LI F, HEXIAO Y, GAO H, et al. Axial behavior of reinforced UHPC-NSC composite column under compression [J]. Materials: Basel, Switzerland, 2020, 13 (13): E2905.
[19] SHAN B, XU C, LAI D D, et al. Experimental research on compressive behavior of seawater and sea sand concrete-filled RPC tubes [J]. Engineering Structures, 2020, 222: 111117.
[20] ABU-LEBDEH T, HAMOUSH S, HEARD W, et al. Effect of matrix strength on pullout behavior of steel fiber reinforced very-high strength concrete composites [J]. Construction and Building Materials, 2011, 25 (1): 39-46.
[21] 陈宝春,李 莉,罗 霞,等.超高强钢管混凝土研究综述[J].交通运输工程学报,2020,20(5):1-21. CHEN Bao-chun, LI Li, LUO Xia, et al. Review on ultra-high strength concrete filled steel tubes [J]. Journal of Traffic and Transportation Engineering, 2020, 20 (5): 1-21.
[21] 陈宝春,李 聪,黄 伟,等.超高性能混凝土收缩综述[J].交通运输工程学报,2018,18(1):13-28. CHEN Bao-chun, LI Cong, HUANG Wei, et al. Review of ultra-high performance concrete shrinkage [J]. Journal of Traffic and Transportation Engineering, 2018, 18 (1):13-28.
[22] 方 志,郑 辉,杨 剑,等.超高性能混凝土结构的设计方法[J].建筑科学与工程学报,2017,34(5):59-67. FANG Zhi, ZHENG Hui, YANG Jian, et al. Design principles for ultra-high performance concrete structures [J]. Journal of Architecture and Civil Engineering, 2017, 34 (5): 59-67.
[23] 方 志,周 腾,刘路明,等.超高性能混凝土受拉性能试验研究[J].铁道学报,2022,44(5):157-165. FANG Zhi, ZHOU Teng, LIU Lu-ming, et al. Experimental study on tensile properties of ultra-high performance concrete [J]. Journal of the China Railway Society, 2022, 44 (5): 157-165.
[24] MANDER J B, PRIESTLEY M J N, PARK R. Theoretical stress-strain model for confined concrete [J]. Journal of Structural Engineering, 1988, 114 (8): 1804-1826.
[25] LAM L, TENG J G. Strength models for fiber-reinforced plastic-confined concrete [J]. Journal of Structural Engineering, 2002, 128 (5): 612-623.
[26] TENG J G, HUANG Y L, LAM L, et al. Theoretical model for fiber-reinforced polymer-confined concrete [J]. Journal of Composites for Construction, 2007, 11 (2): 201-210.
[27] 黄卿维,王思睿,黄 伟,等.RU-NC组合短柱轴压受力性能研究[J].湖南大学学报(自然科学版),2022,49(11):137-149. HUANG Qing-wei, WANG Si-rui, HUANG Wei, et al. Mechanical behavior of RU-NC composite short columns under axial compressive loads [J]. Journal of Hunan University (Natural Sciences), 2022, 49 (11): 137-149.
[28] 单 波,刘 志,肖 岩,等.RPC预制管混凝土组合柱组合效应试验研究[J].湖南大学学报(自然科学版),2017,44(3):88-96. SHAN Bo, LIU Zhi, XIAO Yan, et al. Experimental research on composite action of concrete-filled RPC tube under axial load [J]. Journal of Hunan University (Natural Sciences), 2017, 44 (3): 88-96.
[29] 黄卿维,胡曙光,杜任远,等.预应力RPC箱梁开裂弯矩计算方法[J].土木工程学报,2015,48(增1):15-21. HUANG Qing-wei, HU Shu-guang, DU Ren-yuan, et al. A calculation method for cracking moment of prestressed reactive powder concrete box girder [J]. China Civil Engineering Journal, 2015, 48 (S1): 15-21.

基金

国家重点研发计划项目(2021YFB2601000);陕西省自然科学基础研究计划项目(2023-JC-YB-292)
China National Key Research and Development (2021YFB2601000);Natural Science Basic Research Program of Shaanxi Province (2023-JC-YB-292)
PDF全文下载(6252 KB)

27

Accesses

0

Citation

Detail

段落导航
相关文章

/